引用本文:司杨,陈来军,陈晓弢,高梦宇,麻林瑞,梅生伟.基于分布鲁棒的风-氢混合系统氢储能容量优化配置[J].电力自动化设备,2021,41(10):
SI Yang,CHEN Laijun,CHEN Xiaotao,GAO Mengyu,MA Linrui,MEI Shengwei.Optimal capacity allocation of hydrogen energy storage in wind-hydrogen hybrid system based on distributionally robust[J].Electric Power Automation Equipment,2021,41(10):
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 3868次   下载 1575  
基于分布鲁棒的风-氢混合系统氢储能容量优化配置
司杨1,2, 陈来军1, 陈晓弢1, 高梦宇1, 麻林瑞1, 梅生伟1,2
1.青海大学 启迪新能源学院 青海省清洁能源高效利用重点实验室,青海 西宁 810016;2.清华大学 电机系 电力系统及发电设备控制和仿真国家重点实验室,北京 100084
摘要:
氢储能系统受地理、气候条件限制较小,在构建面向高比例新能源电力系统的风-储混合系统中极具发展潜力。然而,由于风电场的出力具有不确定性,氢储能系统需要在储能、释能、热备用等工况下频繁切换,内部热能供需平衡也呈现出不确定性,进而影响其响应速度甚至实际可用容量。为此,设计了考虑热平衡的风-氢混合系统,构建了考虑电解槽、燃料电池间歇工作模式热平衡的氢储能系统模型;在此基础上,综合考虑风电场功率的不确定性和氢储能系统的投资成本,提出了考虑热平衡不确定性的风-氢混合系统氢储能容量优化配置方法。采用分布鲁棒方法对风电场功率的不确定性进行建模,并将其转化为一组线性风险机会约束进行求解。基于实际风电场数据构建算例,对所提模型和方法进行验证和分析。结果表明,氢储能系统中电解槽和燃料电池的散热系数对系统实际可用容量具有重要的影响,在风-氢混合系统的氢储能容量配置中考虑热平衡约束可以有效提升氢储能系统的实际可用容量和混合系统的经济性。
关键词:  氢储能  风-氢混合系统  容量配置  分布鲁棒  热平衡
DOI:10.16081/j.epae.202110012
分类号:TM732;TK02
基金项目:国家自然科学基金智能电网联合基金资助项目(U1766203);青海省重点研发与转化计划项目(2021-GX-109);青海省基础研究计划项目(2021-ZJ-948Q)
Optimal capacity allocation of hydrogen energy storage in wind-hydrogen hybrid system based on distributionally robust
SI Yang1,2, CHEN Laijun1, CHEN Xiaotao1, GAO Mengyu1, MA Linrui1, MEI Shengwei1,2
1.Qinghai Key Laboratory of Efficient Utilization of Clean Energy, Tus-Institute for Renewable Energy, Qinghai University, Xining 810016, China;2.State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
Abstract:
HESS(Hydrogen Energy Storage System) is less restricted by geographical and climatic conditions, so it has great development potential in constructing wind-storage hybrid system oriented to high proportion of new energy power system. However, due to the uncertainty of wind farm output power, HESS needs to switch frequently among the conditions of energy storage, energy release and heat reserve, and the balance of internal heat energy supply and demand also presents uncertainty, which affects its response speed and even actual available capacity. Therefore, a wind-hydrogen hybrid system considering heat balance is designed, and the HESS model considering heat balance of electrolyzer and fuel cell during intermittent operation mode is established. On this basis, comprehensively considering the uncertainty of wind farm power and the investment cost of HESS, an optimal capacity allocation method of hydrogen energy storage in wind-hydrogen hybrid system considering the uncertainty of heat balance is proposed. The distributionally robust method is used to model the uncertainty of wind farm power, which is transformed into a set of linear risk opportunity constraints to solve. Based on the actual wind farm data, the proposed model and method are verified and analyzed. The results show that the heat dissipation coefficient of electrolyzer and fuel cell in the HESS has an important influence on the actual available capacity of the system, and considering the heat balance constraint in the capacity allocation of the hydrogen energy storage can effectively improve the actual available capacity of the HESS and the economy of the hybrid system.
Key words:  hydrogen energy storage  wind-hydrogen hybrid system  capacity allocation  distributionally robust  heat balance

用微信扫一扫

用微信扫一扫