开关磁阻电机伺服系统的 L₂ 增益鲁棒控制方法

程勇1,2,林辉1

(1. 西北工业大学 自动化学院,陕西 西安 710072;2. 西安科技大学 电气与控制工程学院,陕西 西安 710054)

摘要:通过对开关磁阻电机非线性特性分析,提出了开关磁阻电机(SRM)伺服系统 L₂ 鲁棒控制器设计方法。 建立速度误差动态方程,结合 L₂ 鲁棒控制器理论,通过 L₂ 控制器的设计解决了 SRM 的负载扰动和转速跟 踪问题。设计存储函数证明 L₂控制器实现了扰动抑制和渐进稳定。仿真结果表明,该控制器能够保证系统达 到很好的扰动抑制和转速跟踪效果。

0 引言

94

开关磁阻电机 SRM(Switched Reluctant Motor) 伺服系统要求具有精确的速度跟踪能力和很强的 扰动抑制能力,但是其双凸极结构形成了磁场非线 性^[1],并由此影响转矩输出形成脉动。虽然 SRM 结 构相对简单,但是很难由一个准确的数学解析表达 式来描述,这给 SRM 的研究带来了一定的困难。在 伺服控制过程中,实现对转速跟踪和各类扰动抑制, 并且保持电机的工作特性稳定是各国学者研究的 热点。

伺服控制中,常见的控制方法是 PID 算法,由于 其控制参数固定,很难在扰动下达到满意的控制效 果。L₂鲁棒控制器已经被证明是一种在不同的伺服 系统中抑制扰动的有效方法^[2-6]。结合 SRM 转矩和 磁链的非线性特性和 L₂鲁棒控制器要求,通过推导 转速误差,提出了将转速跟踪和扰动抑制都转化为 L₂增益鲁棒控制输出转矩跟踪和扰动抑制都转化为 晶器跟随鲁棒控制输出转矩指令,实现对 SRM 的鲁 棒控制。常用转矩控制方法是通过神经网络逼近非 线性 SRM 内部转矩模型,然后采用转矩分配法实现 转矩的分配控制。转矩分配法需要再次计算控制 电流,控制律复杂。本文采用直接瞬时转矩控制 (DITC)方法,该方法^[7-12]已经被证明是一种算法简 单、具有广泛适用性的转矩控制方法。

本文提出了一种结合 DITC 方法的 L₂ 鲁棒控制 系统。通过设计存储函数,以数学和仿真实验证明了 这种控制方法不仅能够实现对扰动的抑制,而且实 现了基于鲁棒控制下的转速跟踪和基于 DITC 的转 矩控制。与文献[13]提出的鲁棒控制系统相比,本文 提出的鲁棒控制不是通过标称系统(系统精确建模 部分)的稳定性控制,来实现系统在运行时对不确定

收稿日期:2011-12-02;修回日期:2013-03-20

基金项目:航空科学基金资助项目(2007ZC53036)

Project supported by the Aeronautical Science Foundation of China(2007ZC53036)

性引起的初始条件的响应的稳定性控制。因为基于 标称系统的控制方法与实际工程中差距较大,而且 设计系统时无法事先定量地把握不确定性对系统 性能品质的影响^[13]。本文通过 L₂控制器解决了 SRM 伺服系统的转速跟踪问题和扰动抑制问题。仿真研 究的结论证明了这种方法的正确性。

1 问题提出

在 SRM 中,有:

$$\boldsymbol{U} = \boldsymbol{R}\boldsymbol{i} + \frac{\mathrm{d}\boldsymbol{\psi}(\boldsymbol{i},\boldsymbol{\theta})}{\mathrm{d}\boldsymbol{t}} \tag{1}$$

其中,U为绕组相电压,i为绕组电流, θ 为转子位置 角, $\psi(i,\theta)$ 为电机定子的相绕组磁链。

每相绕组磁链 $\psi(i,\theta)$ 是关于绕组相电流和转子 位置角的函数:

$$\psi(\boldsymbol{i},\boldsymbol{\theta}) = L(\boldsymbol{i},\boldsymbol{\theta})\boldsymbol{i} \tag{2}$$

其中,L为相电感。

按照力学定律可列出在电动机电磁转矩 T_e和 负载转矩 T_L作用下的转子机械运动方程:

$$\boldsymbol{T}_{\mathrm{e}} = J \frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t} + k_{\omega}\boldsymbol{\omega} + \boldsymbol{T}_{\mathrm{L}}$$
(3)

其中,J为开关磁阻电机的转动惯量, k_{ω} 为摩擦系数, ω 为电机角速度。

2 控制律推导

2.1 L₂ 增益鲁棒控制理论概述 假设如下系统:

$$\begin{pmatrix} \dot{\mathbf{x}} = f(\mathbf{x}) + g(\mathbf{x})\mathbf{w} \\ \mathbf{z} = h(\mathbf{x}) \end{cases}$$
(4)

其中,w为系统中未知干扰,z为罚函数。 在该系统中,定义L2增益为:

$$F = \sup_{\|\boldsymbol{w}\| \neq 0} \left(\frac{\int_{0}^{T} \|\boldsymbol{z}\|^{2} \mathrm{d}t}{\int_{0}^{T} \|\boldsymbol{w}\|^{2} \mathrm{d}t} \right)^{1/2}$$
(5)

由式(5)可见,F越小说明干扰信号对评价信号 的影响越小,系统抑制扰动能力越强。干扰抑制等 价为设计控制器使闭环系统 L₂ 增益尽可能小或者 小于某一给定的值,同时保证干扰为零时的闭环系 统渐近稳定^[2-4]。

给定的正数 γ>0,如果对闭环系统可以找到可 微的正定函数 V(**x**)满足

$$\dot{V} \le \frac{1}{2} (\gamma^2 \| \boldsymbol{w} \|^2 - \| \boldsymbol{z} \|^2)$$
(6)

就说明 L_2 增益小于给定的性能指标 γ ,达到了抑制 扰动的目的,这就是 L_2 增益控制。

2.2 L₂控制问题的描述

为了实现对速度的准确跟踪,对扰动信号的抑制作如下定义。

定义1 定义速度误差:

$$\boldsymbol{e} = \boldsymbol{\omega}^* - \boldsymbol{\omega} \tag{7}$$

其中,ω*为恒定速度的给定量。

定义2 干扰抑制的评价信号为:

$$\mathbf{Z} = [p_1 \boldsymbol{e}] \tag{8}$$

其中,p₁>0为加权系数。

由此可见,L2鲁棒控制器的设计问题可以描述 为:对给定控制对象求反馈控制律使得闭环系统满 足如下条件。

a. 当扰动 *T*_L=0 时,对于任意初始状态系统满 足全局渐近稳定。

$$\lim \boldsymbol{e}(t) = 0$$

b. 当扰动 $T_{L} \neq 0$ 时,对于任意的扰动信号,闭环 系统具有抑制扰动的性能。

$$\int_0^T \| \boldsymbol{Z}(t) \|^2 \mathrm{d}t \leq \gamma \int_0^T \| \boldsymbol{T}_{\mathrm{L}}(t) \|^2 \mathrm{d}t$$

其中,*T*>0为有限时间,γ>0为给定干扰的抑制度。 2.3 L₂鲁棒控制律推导

定义3 对系统定义供给率为:

 $s(\boldsymbol{F}_{L},\boldsymbol{z}) = \boldsymbol{\gamma}^{2} \| \boldsymbol{F}_{L}(t) \|^{2} - \| \boldsymbol{Z}(t) \|^{2}$ (9) 其中, \boldsymbol{F}_{L} 为系统干扰, \boldsymbol{F}_{L} = \boldsymbol{T}_{L^{o}}

如果系统对上述供给率是耗散的,那么存在正定函数 $V(\mathbf{x})$,使得:

$$\dot{V} \leq \gamma^2 \| T_{\rm L}(t) \|^2 - \| Z(t) \|^2$$
 (10)
日 $V(\mathbf{r})$ 为存储函数 从面格耗散性和 L 增益约

其中, $V(\mathbf{x})$ 为存储函数。从而将耗散性和 L_2 增益约束条件联系起来。

以 e 为状态变量,构成如下系统:

$$\dot{\boldsymbol{e}} = -\frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t} = \frac{1}{J} (\boldsymbol{T}_{\mathrm{L}} + k_{\omega}\boldsymbol{\omega} - \boldsymbol{T}_{\mathrm{e}})$$
(11)

定理1 对于式(11)系统有:

$$\boldsymbol{T}_{e} = k_{\omega}\boldsymbol{\omega} + \frac{\boldsymbol{e}}{4\gamma^{2}J} + Jp_{1}^{2}\boldsymbol{e} + JK_{1}\boldsymbol{e}$$
(12)

其中,K1>0为给定增益系数,γ>0为给定干扰抑制

度。那么,式(12)就是系统的L₂控制器。 **a.**系统耗散性证明。

构造系统的存储函数 $V = \frac{1}{2} e^2$,那么沿着系统轨 迹对时间的微分有.

$$\dot{V} = \boldsymbol{e} \frac{\mathrm{d}\boldsymbol{e}}{\mathrm{d}t} = \frac{\boldsymbol{e}}{J} (\boldsymbol{T}_{\mathrm{L}} + k_{\omega}\boldsymbol{\omega} - \boldsymbol{T}_{\mathrm{e}})$$
(13)

$$\begin{split} & \mathcal{E} \ \mathcal{X} \ H = \dot{V} + \| Z \|^{2} - \gamma^{2} \| T_{L} \|^{2}, \mathbb{M}] : \\ & H = \frac{e}{J} \left(T_{L} + k_{\omega} \omega - T_{e} \right) + p_{1}^{2} \| e \|^{2} - \gamma^{2} \| T_{L} \|^{2} \leqslant \\ & - \left(\gamma \| T_{L} \| - \frac{\| e \|}{2\gamma J} \right)^{2} + \frac{\| e \|^{2}}{4\gamma^{2} J^{2}} + p_{1}^{2} \| e \|^{2} - \\ & \frac{e}{J} T_{e} + \frac{e}{J} k_{\omega} \omega = - \left(\gamma \| T_{L} \| - \frac{\| e \|}{2\gamma J} \right)^{2} - \\ & e \left(\frac{T_{e}}{J} - \frac{e}{4\gamma^{2} J^{2}} - p_{1}^{2} e - \frac{1}{J} k_{\omega} \omega \right) = \\ & - \left(\gamma \| T_{L} \| + \frac{\| e \|}{2\gamma J} \right)^{2} - K_{1} e^{2} < 0 \end{split}$$

其中, $K_1 \boldsymbol{e} = \frac{\boldsymbol{T}_e}{J} - \frac{\boldsymbol{e}}{4\gamma^2 J^2} - p_1^2 \boldsymbol{e} - \frac{1}{J} k_\omega \boldsymbol{\omega}, K_1 > 0$ 为给定

的增益系数。那么 $T_e = k_\omega \omega + \frac{e}{4\gamma^2 J} + J p_1^2 e + J K_1 e_o$

b.闭环系统全局渐近稳定性证明。

当 $T_{\rm L}=0$ 时,将 $T_{\rm e}$ 代入 \dot{V} 有:

$$\dot{V} = \boldsymbol{e} \frac{\mathrm{d}\boldsymbol{e}}{\mathrm{d}t} = \frac{\boldsymbol{e}}{J} \left(\boldsymbol{T}_{\mathrm{L}} + k_{\omega}\boldsymbol{\omega} - \boldsymbol{T}_{\mathrm{e}}\right) = \frac{\boldsymbol{e}}{J} \left(k_{\omega}\boldsymbol{\omega} + \boldsymbol{T}_{\mathrm{L}} - \frac{\boldsymbol{e}}{4\gamma^{2}J} - Jp_{1}^{2}\boldsymbol{e} - JK_{1}\boldsymbol{e} - k_{\omega}\boldsymbol{\omega}\right) = -\boldsymbol{e}^{2} \left(\frac{1}{4\gamma^{2}J^{2}} + p_{1}^{2} + K_{1}\right) < 0$$

闭环系统全局渐近稳定。

3 仿真验证

考虑到转矩特性的非线性,常见的转矩分配方 法实用性不强。所以系统仿真结构如图 1 所示,采 用转速和转矩双闭环的控制结构。鲁棒控制器根据 速度给定 ω^{*}、反馈误差 e 和反馈转速 ω,按照式(12) 的控制律输出转矩指令 T_e。由于 SRM 转矩的非线 性,文献[13]采用文献[14]转矩模型实现鲁棒控制。 考虑控制对象的通用性,鲁棒控制系统的内环通过 DITC 实现对 L₂控制器输出跟踪。直接瞬时转矩的 控制滞环策略采用文献[8]的方法。

系统参数为:采用四相 8/6 式 SRM,转动惯量 J= 0.0035 kg·m², 摩擦系数 $k_{\omega}=0.04$ mN·m·s/rad, 开通

图 1 系统结构图 Fig.1 System structure

角度 θ_{on} 和关断角度 θ_{off} 分别为 3° 和 22°。取 $\gamma = 0.5$, $K_1 = 100, p_1 = 0.1$,系统目标转速是 500 r/min,启动负 载为 3.5 N·m。0.4 s 时,负载跃变为 2.5 N·m。图 2 是速度仿真结果,图 3 是图 2 的局部放大图。

图 3 同 即 放 入 图

Fig.3 Partial enlarged curve

通过仿真曲线可以看出,L₂ 增益鲁棒控制的方 法满足速度跟随给定的要求。电机带载转速在 0.15 s 附近达到 500 r/min。转速经过短暂的速度超 调后达到稳态。在 0.4 s 时,系统负载发生跃变,在 L₂ 控制器的作用下,系统迅速地稳定下来。通过式(5)、 (6)、(12)可知,在 L₂ 控制器中, p_1 对 Z 的范数有影 响;而 γ 是扰动抑制度,理论上越小越好,但是过小 会产生很大的输出量。

由上可知,L2鲁棒控制器实现了转速的跟踪控制和负载扰动的抑制。

4 结语

文章给出了 SRM 伺服系统速度跟踪系统的 L₂ 鲁棒控制器的设计方法,推导出了鲁棒控制律,并且 给出了抑制扰动和渐近稳定相关的数学证明。控 制系统的转矩内环采用了基于 DITC 的转矩控制系 统。仿真实验证明,L₂鲁棒控制系统能够满足抑制 扰动和转速跟踪的控制要求。

参考文献:

- MILLER T J E. Switched reluctance motors and their control [M]. London, UK: Magna Physics Publishing and Oxford Science Publications, 1993.
- [2] van DERSCHAFT A J. L₂-gain analysis of nonlinear system and nonlinear state feedback H_x control[J]. IEEE Trans on Automatic Control, 1992, 37(6):770-784.
- [3] 林飞,张春朋,宋文超,等. 感应电机的 L₂ 增益鲁棒控制[J]. 中国 电机工程学报,2003,23(9):117-119.
 LIN Fei,ZHANG Chunpeng,SONG Wenchao, et al. The robust control of induction motor based on L₂-gain[J]. Proceedings of the CSEE,2003,23(9):117-119.

- [4] 郭庆鼎,蓝益鹏. 永磁直线伺服电机 L₂ 鲁棒控制的研究[J]. 中国电机工程学报,2005,25(18):146-150.
 GUO Qingding,LAN Yipeng. Research on L₂ robust control for permanent magnet linear servo motor[J]. Proceedings of the CSEE,
- 2005,25(18):146-150.
 [5] 李传江,马广富. 基于 L₂ 增益稳定的航天器鲁棒姿态控制[J]. 哈尔滨工业大学学报,2007,39(5):712-720.
 LI Chuanjiang,MA Guangfu. Spacecraft robust attitude control design based on L₂-gain stabilization[J]. Journal of Harbin Institute of Technology,2007,39(5):712-720.
- [6] 陈维,王耀南. 基于神经网络的现代感应电机自适应 L₂ 鲁棒控制
 [J]. 中国电机工程学报,2007,27(15):93-99.
 CHEN Wei,WANG Yaonan. Adaptive L₂ robust control of modern induction motors using neural networks [J]. Proceedings of the CSEE,2007,27(15):93-99.
- [7] ROBERT B I,de DONCKER R W A A. Direct instantaneous torque control of switched reluctance drives[J]. IEEE Trans on Industry Application, 2003, 39(4):1046-1051.
- [8] 漆汉宏,张婷婷,李珍国,等. 基于 DITC 的开关磁阻电机转矩脉动最小化研究[J]. 电工技术学报,2007,22(7):136-140.
 QI Hanhong,ZHANG Tingting,LI Zhenguo,et al. SRM torque ripple minimization based on direct instantaneous torque control [J]. Transactions of China Electrotechnical Society,2007,22(7): 136-140.
- [9] 夏长亮,陈自然,李斌. 基于 RBF 神经网络的开关磁阻电机瞬时 转矩控制[J]. 中国电机工程学报,2006,26(19):127-132.
 XIA Changliang,CHEN Ziran,LI Bin. Instantaneous torque control of switched reluctance motors based on RBF neural network
 [J]. Proceedings of the CSEE,2006,26(19):127-132.
- [10] 李珍国,魏艳君,阚志忠,等. 基于四电平功率变换电路的开关 磁阻电机瞬时转矩控制[J]. 电工技术学报,2007,22(8):144-149.
 LI Zhenguo,WEI Yanjun,KAN Zhizhong, et al. Direct instantanous torque control of SRM using four-level converter [J]. Transactions of China Electrotechnical Society,2007,22(8): 144-149.
- [11] 许爱德,樊印海,李自强. 空间电压矢量下 SRM 转矩脉动最小 化[J]. 电机与控制学报,2010,14(1):35-40.
 XU Aide,FAN Yinhai,LI Ziqiang. SRM torque ripple minimization based on space voltage vector[J]. Electric Machines and Control,2010,14(1):35-40.
- [12] 程勇,林辉. 五电平拓扑下开关磁阻电机直接瞬时转矩控制[J]. 电机与控制学报,2011,15(4):18-22.
 CHENG Yong,LIN Hui. Direct instantaneous torque control of switched reluctance motor with five level converter[J]. Electric Machines and Control,2011,15(4):18-22.
- [13] 曹家勇,陈幼平,詹琼华,等. 机械手直接驱动的开关磁阻电动机的鲁棒控制[J]. 中国电机工程学报,2002,22(12):66-69.
 CAO Jiayong,CHEN Youping,ZHAN Qionghua, et al. Robust control of switched reluctance motors for direct-driving of manipulators[J]. Proceedings of the CSEE,2002,22(12):66-69.
- [14] BORTOFF S A, KOHAN R R, MILMAN R. Adaptive control of variable reluctance motors: a spline function approach[J]. IEEE Trans on Industrial Electronics, 1998, 45(3):433-444.

作者简介:

程 勇(1979-),男,陕西西安人,博士研究生,主要研究 方向为检测技术、开关磁阻电机控制(E-mail:chengbati@163. com)。

范对比与分析[J]. 现代电力,2011,28(6):77-81.

LIU Yanhua, ZHANG Nan, ZHAO Dongmei. The comparison and analysis on specifications of power quality in standards of PV grid-connected system at home and abroad [J]. Modern Electric Power, 2011, 28(6):77-81.

[19] 王继东,张小静,杜旭浩,等.光伏发电与风力发电的并网技术 标准[J].电力自动化设备,2011,31(11):1-7.

WANG Jidong, ZHANG Xiaojing, DU Xuhao, et al. Standards of grid-connection technology for photovoltaic and wind power generations [J]. Electric Power Automation Equipment, 2011, 31 (11):1-7.

- [20] National Renewable Energy Laboratory. Solar radiation research laboratory/daily plots and raw data files[EB/OL]. [2012-10-01]. http://www.nrel.gov/midc/srrl_bms/.
- [21] RABL A. Active solar collectors and their applications [M]. New York, USA: Oxford University Press, 1985.
- [22] LORENZO E. Energy collected and delivered by PV modules [M] // Handbook of Photovoltaic Science and Engineering. Chichester, England; John Wiley & Sons Ltd., 2002;905-970.
- [23] 刘海璇,胡仁杰,蒋玮. 基于超大电容器储能的独立光伏系统的

建模研究[J]. 电工电气,2009,29(10):13-16.

LIU Haixuan, HU Renjie, JIANG Wei. Study on the model of independent photovoltaic system using ultracapacitor as energy storage unit[J]. Electrotechnics Electric, 2009, 29(10); 13-16.

[24] 丁明,林根德,陈自年,等.一种适用于混合储能系统的控制策略[J].中国电机工程学报,2012,32(7):1-6.
DING Ming,LIN Gende,CHEN Zinian, et al. A control strategy for hybrid energy storage systems[J]. Proceedings of the CSEE, 2012,32(7):1-6.

作者简介:

张卫东(1970-),男,四川遂宁人,博士研究生,研究方向 为光伏发电系统技术(**E-mail**:zhwdo@qq.com);

刘祖明(1962-),男,云南临沧人,教授,博士研究生导师, 通信作者,研究方向为光伏电池材料和光伏应用系统(E-mail: zmliupy@126.com):

申兰先(1978-), 女, 云南昭通人, 博士研究生, 研究方向 为光伏电池材料(E-mail: 674000466@qq.com)。

Flexible grid-connection of photovoltaic power generation system with energy storage system for fluctuation smoothing

ZHANG Weidong^{1,2}, LIU Zuming¹, SHEN Lanxian¹

(1. Solar Research Institution, Key Laboratory of Yunnan Provincial Renewable Energy Engineering,

Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology,

Ministry of Education, Yunnan Normal University, Kunming 650092, China;

2. Kunming General Hospital of Chengdu Military Command, Kunming 650032, China)

Abstract: The fluctuating power curve of PV(PhotoVoltaic) array during day is investigated and the capacity of energy storage system is set for the flexible grid-connection of PV power generation system. The real meteorological data of a PV power station are applied and, combined with the low-pass filter algorithm, the capacity of its energy storage system meeting the requirements of PV grid-connection standard for the maximum power variation rate of both 1 min and 10 min is obtained. The relationship between filter time constant and energy storage capacity is discussed for the selected power curves. The conclusion is that, the flexible grid-connection of PV power system can be realized by the integration of energy storage system; the greater the filter time constant is, the better the effect of fluctuation smoothing is and the higher the power and capacity needs of energy storage system are; the energy storage capacity is mainly determined by the irradiance fluctuation in cloudy day.

Key words: photovoltaic power generation system; flexible grid-connection; energy storage; fluctuation smoothing; low-pass filter algorithm

(上接第 96 页 continued from page 96)

Robust control based on L₂-gain for servo system of switched reluctant motor

CHENG Yong^{1,2}, LIN Hui¹

(1. Automatic College, Northwestern Polytechnical University, Xi'an 710072, China;

2. School of Electrical and Control Engineering, Xi'an University of

Science and Technology, Xi'an 710054, China)

Abstract: A design of L_2 robust controller for the servo system of SRM(Switched Reluctant Motor) is proposed based on its nonlinear characteristic analysis. The dynamic equation of speed error is built and, combined with the L_2 robust controller theory, the load disturbance and speed tracking of SRM are involved in the design of L_2 controller. The storage function is designed to prove that the L_2 controller realizes the disturbance suppression and asymptotical stability. Simulative result shows that the designed controller restrains the disturbance and tracks the speed effectively.

Key words: L₂-gain; robust control; servo systems; speed tracking; asymptotical stability; switched reluctant motor; torque control; nonlinear analysis