基于内网实测信息的多端口外网静态等值方法

余 娟¹,朱 柳¹,颜 伟¹,赵 霞¹,卢建刚²,郭文鑫² (1. 重庆大学 输配电装备及系统安全与新技术国家重点实验室,重庆 400030; 2. 广东电网电力调度控制中心,广东 广州 510600)

摘要: 在外网信息完全未知的情况下,提出基于内网实测信息的多端口外网静态等值方法,以估计多端口外 网等值网络及其参数。该方法所需的内网实测信息不要求内网支路开断,利用外网等值参数与内网实测信息 之间的约束关系,采用两阶段估计方案,建立多端口外网等值参数的量测方程及其两阶段的最小二乘模型, 再利用最小二乘法求解得到多端口外网等值网络参数。IEEE 39 节点系统和广东电网的仿真结果验证了所 提方法的正确性。

0 引言

随着我国电力改革的不断深入,中国电力市场将 逐步形成^[1-2]。在电力市场条件下,不同电力公司之 间存在竞争关系,他们不希望公开本公司的电网运 行状况信息,因此实现不同控制中心之间的实时数 据交换比较困难。而在实际电力系统中,针对完全未 知的外网,调度部门的能量管理系统 EMS(Energy Management System)通常采用的外网等值模型为 简单挂等值机模型^[1-2],该模型不模拟外部电网,直 接在内网边界挂等值机,通过状态估计的在线匹配 计算等值机的注入功率。由于该模型不能计及外网 对内网操作产生的响应,在内网进行线路和发电机的 模拟开断操作时计算误差很大,严重影响了 EMS 软 件的实用性。因此,仅基于内网信息估计外网等值 网络参数对电网的安全稳定运行有重要的意义。

考虑到系统的规模与计算机内存容量,以及分析 计算所需的响应时间等因素,电力部门经常采用 Ward 等值、REI 等值及其相应的改进方法^[36],来取代系统 中某些不能了解其运行细节的部分,以缩小系统的规 模。但是采用该类方法的前提是需要完整的外网拓 扑结构和状态信息,不能处理外网信息未知的等值 问题。

在仅基于内网实测信息估计外网等值参数的方 法中,单端口的戴维南等值方法^[79]较成熟。一般是 建立戴维南等值参数的数学表达式,利用边界节点处 的量测电压和电流求解。其主要应用于电力系统中 的静态电压稳定性分析。迄今为止,针对多端口网络 的等值方法研究很少。文献[10]提出了基于内网实 测信息的两端口外网静态等值参数估计方法,有一

收稿日期:2012-08-15;修回日期:2013-04-22

定的效果,但是只能适用于边界节点为2个的电力 系统。文献[11-12]提出了基于内网信息的多端口外 网参数估计方法,其要求内网支路开断前后的状态 信息,该条件过于苛刻难以应用于实际系统,而且其 假设内网支路开断前后边界节点的等值注入功率保 持不变,该假设很难成立,可能带来较大的误差。

为此,本文提出了基于内网实测信息的多端口外 网静态等值方法。该方法同样基于内网多个时段的 实测信息,但并不需要内网支路的开断操作,利用该 实测信息进行状态估计得到多个时段边界节点处的 电压和内网的等效电流,然后利用其和外网等值参 数之间的约束关系,采用两阶段估计方案,建立外网 等值参数的量测方程和最小二乘模型,以此得到多 端口互联电力系统中外网等值网络的参数。基于 IEEE 39节点系统和广东电网,论证了本文所提方法 的正确性。

1 多端口外网静态等值网络

估计外网等值参数的第1步是选择合理的外网 等值网络,外网等值网络是否合理直接影响外网等 值参数估计的有效性。由于本文方法所解决问题的 对象是多端口的互联电网,随着边界节点个数的增 加,所需求解的外网等值参数的数量至少呈平方关 系增加(如第2节所述),严重影响其可观测性。因 此,为了增强外网等值参数估计的可观测性,本文首 先采用等值参数较少的多端口简化 Ward 等值网络 (如图1(a)所示)作为初始的外网等值网络。由于多 端口简化 Ward 等值网络采用恒定的等值电流来代 表外网对内网的注入功率,当内网状态发生变化时, 该模型将会产生较大的误差。因此将多端口简化 Ward 等值网络拓展得到的多端口扩展电压源 Ward 等值网络(如图1(b)所示)作为最终的外网等值网 络,后者可以根据内网的变化调节发电机的出力,提

基金项目:国家自然科学基金资助项目(51007098,50577073) Project supported by the National Natural Science Foundation of China(51007098,50577073)

图 1 多端口互联电网的 2 个外网等值网络 Fig.1 Two equivalent external networks of multi-port interconnected power grid

高外网等值网络的精度。

图 1 实线框内为内网的实测信息,其中 U_i(i=1, 2,…,n)为内网边界节点 i 处的电压相量,n 为边界 节点个数;L_i 为边界节点 i 处内网的等效电流,是与 边界节点相连的内网线路上传输的功率与该边界节 点负荷之和的电流表示形式。

图 1(a) 虚线框内为多端口外网简化 Ward 等值 网络,其中 I_i^{eq} 为边界节点i处的外网等值电流, $Z_{ij} = R_{ij} + jX_{ij}$ 为边界节点i和j之间等值联络线的阻抗。

将多端口外网简化 Ward 等值网络中的等值注 入电流用电压源串联阻抗支路来代替,便得到了多 端口外网扩展电压源 Ward 等值网络,如图 1(b)虚线

框内所示。其中, E_i 和 \tilde{S}_i 分别为边界节点*i*对应的虚 拟发电机的电压和功率; $Z'_{ij}=R'_{ij}+jX'_{ij}$ 为边界节点*i* 和*j*之间等值联络线的阻抗, $Z_i=R_i+jX_i$ 和 I_i 分别为 边界节点*i*对应的扩展电压源支路的阻抗和电流。

2 多端口外网静态等值参数的最小二乘模型

基于内网的实测数据,利用状态估计可以得到 内网边界节点处的电压和等效电流,即如图1实线框 内所示的 U_i和 I_{ii},然后基于其和多端口外网等值参 数的约束关系,可建立如图1 虚线框内所示2个多 端口外网等值参数的量测方程,并进一步得到其最小 二乘模型。

2.1 多端口简化 Ward 等值参数的最小二乘模型 如图 1(a)所示,由 KCL 定理易知,外网注入边 界节点的电流应该等于内网的等效电流,即:

$$\mathbf{I}_{i}^{eq} - \sum_{\substack{j=1\\j\neq i}}^{n} \frac{U_{i}^{t} - U_{j}^{t}}{Z_{ij}} = \mathbf{I}_{\mathrm{L}i}^{t}$$
(1)

其中,上标 *t*(*t*=1,2,…,*m*)代表时段 *t*,*m* 为所需内 网量测数据的时段数。

式(1)左边和右边同乘 $\prod_{\substack{j=1\\j\neq i}}^{n} Z_{ij}$,移项并按照实部和 虚部展开,可得到式(2)和式(3): $f_{i1}^{t}(\mathbf{x}_{s}) = a_{1}(I_{i,\text{Re}}^{ee} - I_{1,i,\text{Re}}^{t}) - a_{2}(I_{i,\text{Im}}^{ee} - I_{1,i,\text{Im}}^{t}) - \sum_{\substack{j=1\\j\neq i}}^{n} [b_{1}(U_{i,\text{Re}}^{t} - U_{j,\text{Re}}^{t}) - b_{2}(U_{i,\text{Im}}^{t} - U_{j,\text{Im}}^{t})] = 0$ (2) $f_{i2}^{t}(\mathbf{x}_{s}) = a_{2}(I_{i,\text{Re}}^{ee} - I_{1,i,\text{Re}}^{t}) + a_{1}(I_{i,\text{Im}}^{ee} - I_{1,i,\text{Im}}^{t}) - \sum_{\substack{j=1\\j\neq i}}^{n} [b_{2}(U_{i,\text{Re}}^{t} - U_{j,\text{Re}}^{t}) + b_{1}(U_{i,\text{Im}}^{t} - U_{j,\text{Im}}^{t})] = 0$ (3)

其中, a_1 和 a_2 分别为 $\prod_{j=1 \atop j \neq i}^n Z_{ij}$ 的实部和虚部, b_1 和 b_2 分

別为 $\prod_{\substack{k=1\\k\neq i,j}}^{n} Z_{ik}$ 的实部和虚部,下标 Re 和 Im 分别代表

相应变量的实部和虚部, $\mathbf{x}_{s} = [I_{i,\text{Re}}^{\text{eq}}, R_{ij}, X_{ij}]_{\circ}$

因此,外网多端口简化 Ward 等值参数的最小二 乘估计模型为:

$$J_{1} = \min\left[\sum_{h=1}^{2}\sum_{t=1}^{m}\sum_{i=1}^{n}(f_{ih}^{t}(\boldsymbol{x}_{s}))^{2}\right]$$
(4)

当边界节点个数为n而时段数为m时,可用的 量测方程式(2)、(3)共有2nm个。此时,待求解的 x_s 中 P_{Re} 和 P_{Lm} 各为n个, R_{ij} 和 X_{ij} 各为n(n-1)/2个,因此,待求等值参数的个数为 n^2+n 个。可见,随 着多端口互联电网之间边界节点个数的增加,待求等 值参数的个数会呈平方关系增加。为了使得式(4)可 解,则 $2nm>n^2+n$ 需成立,即m>(n+1)/2需成立。

2.2 多端口扩展电压源 Ward 等值参数的最小二乘 模型

由于多端口扩展电压源 Ward 等值参数较多,直 接求解其参数会产生较大的误差。因此,先估计出多 端口简化 Ward 等值网络的参数,然后利用简化 Ward 等值网络和扩展电压源 Ward 等值网络之间的近似 关系,估计出后者的参数,并将其作为外网最终的等 值网络,这也是本文采取两阶段方案的原因。

基于上述思想,将多端口简化 Ward 等值网络的 参数估计值作为多端口扩展电压源 Ward 等值参数 的近似值,可以得到量测方程式(5)--(8):

$$g_{ij1}(\mathbf{x}_{e}) = R'_{ij} - R_{ij} = 0 \tag{5}$$

$$g_{ij2}(\boldsymbol{x}_{\rm e}) = X'_{ij} - X_{ij} = 0 \tag{6}$$

$$g_{i1}^t(\boldsymbol{x}_{e}) = I_{i,\text{Re}}^t - I_{i,\text{Re}}^{eq} = 0$$
(7)

$$g_{i2}(\mathbf{x}_{e}) = I_{i,\text{Im}}^{t} - I_{i,\text{Im}}^{eq} = 0$$
 (8)

电压源支路上的电流可表示为($E_i - U_i$)/ $Z_i = I_i$, 两边同乘 Z_i ,将其按照实部和虚部展开:

$$g_{i3}^{t}(\boldsymbol{x}_{e}) = E_{i,\text{Re}}^{t} - U_{i,\text{Re}}^{t} - R_{i}I_{i,\text{Re}}^{t} + X_{i}I_{i,\text{Im}}^{t} = 0$$
(9)

 $g'_{i4}(\mathbf{x}_e) = E'_{i,\text{Im}} - U'_{i,\text{Im}} - R_i I'_{i,\text{Im}} - X_i I'_{i,\text{Re}} = 0$ (10) 在多端口扩展电压源 Ward 等值网络中,将虚拟

发电机设为 PV 节点,故其电压幅值是不变的:

$$g_{i5}^{t}(\boldsymbol{x}_{e}) = (E_{i,\text{Re}}^{t})^{2} + (E_{i,\text{Im}}^{t})^{2} - E_{i}^{2} = 0$$
(11)

和第 2.1 节类似,外网注入边界节点的电流和内网的等效电流相等,可得到以下方程:

$$g_{i6}^{t}(\boldsymbol{x}_{e}) = a_{1}^{t}(I_{i,\text{Re}}^{\text{eq}} - I_{\text{L}i,\text{Re}}^{t}) - a_{2}^{t}(I_{i,\text{Im}}^{\text{eq}} - I_{\text{L}i,\text{Im}}^{t}) -$$

$$\sum_{\substack{j=1\\ i\neq i}}^{n} \left[b_{1}'(U_{i,\text{Re}}^{i} - U_{j,\text{Re}}^{i}) - b_{2}'(U_{i,\text{Im}}^{i} - U_{j,\text{Im}}^{i}) \right] = 0 \quad (12)$$

$$g_{i7}^{t}(\boldsymbol{x}_{e}) = a_{2}^{\prime}(I_{i,\text{Re}}^{\text{eq}} - I_{\text{L}i,\text{Re}}^{t}) + a_{1}^{\prime}(I_{i,\text{Im}}^{\text{eq}} - I_{\text{L}i,\text{Im}}^{t}) - \sum_{\substack{j=1\\j\neq i}}^{n} \left[b_{2}^{\prime}(U_{i,\text{Re}}^{t} - U_{j,\text{Re}}^{t}) + b_{1}^{\prime}(U_{i,\text{Im}}^{t} - U_{j,\text{Im}}^{t}) \right] = 0 \quad (13)$$

其中, $\mathbf{x}_{e} = [I_{i,\text{Re}}^{t}, I_{i,\text{Im}}^{t}, R_{i}, X_{i}, R_{j}^{\prime}, X_{j}^{\prime}, E_{i,\text{Re}}^{\prime}, E_{i,\text{Im}}^{t}, E_{i}^{}], a_{1}^{\prime}, a_{2}^{\prime}$ 分别为 $\prod_{j=1 \atop j\neq i}^{n} Z_{jj}^{\prime}$ 的实部和虚部, $b_{1}^{\prime}, b_{2}^{\prime}$ 分别为 $\prod_{\substack{k=1 \\ k\neq i, j}}^{n} Z_{ik}^{\prime}$ 的实

部和虚部。

因此外网多端口扩展电压源 Ward 等值参数的 最小二乘估计模型为:

$$J_{2} = \min \left[\sum_{h=1}^{2} \sum_{i=1}^{n} \sum_{\substack{j=1 \ j \neq i}}^{n} (g_{ijh}(\boldsymbol{x}_{e}))^{2} + \sum_{h=1}^{7} \sum_{i=1}^{m} \sum_{i=1}^{n} (g_{ih}^{t}(\boldsymbol{x}_{e}))^{2} \right] (14)$$

当边界节点个数为 n 而时段数为 m 时,可用的 量测方程式(5)、(6)共有 n(n-1)个,式(7)—(13)共 有 7nm 个,因此,量测方程共有 7nm+n²-n 个。待求 解的未知量 \mathbf{x}_e 中, $I'_{i,\text{Re}}$ 和 $I'_{i,\text{Im}}$ 各为 nm 个, R'_{ij} 和 X'_{ij} 各 为 n(n-1)/2 个, R_i 和 X_i 各为 n 个, $E'_{i,\text{Re}}$ 和 $E'_{i,\text{Im}}$ 各为 nm 个, E_i 为 n 个,因此,待求等值参数的个数总共为 4nm+n²+2n 个。为使得式(14)可解,则 7nm+n²-n> 4nm+n²+2n 需成立,即 m>1 需成立。

3 多端口外网等值网络参数的求解流程

利用内网的实测信息估计多端口外网等值网络 及其参数的流程如下。

a. 确定所需内网量测数据的时段数。

根据互联电网边界节点的个数,综合考虑量测方程的冗余性和等值精度,确定所需内网实测数据的时段数。如当边界节点个数为3时,第1阶段所需要的内网时段数 m 需满足 m>(n+1)/2=2;第2阶段所需要的内网时段数需满足 m>1。综合考虑2个阶段模型的可解性以及等值参数的精度,并根据大量的仿真结果可知内网量测数据的时段数 m 取3 较合适。

另外,假设外网的模型和状态是基本保持不变的, 因此也相应地要求内网的模型和状态基本保持不 变。即所采用的多个时段的内网数据的变化是较小 的。这里的变化较小主要指 2 个方面:一方面是电 网的拓扑结构基本保持不变,另一方面是电网的状 态信息变化较小。

b. 计算内网边界节点处的电压和等效电流。

基于内网 m 个时段的实时量测数据进行状态 估计,得到 n 个边界节点的电压相量和 n 个与边界节 点相连的内网线路上传输的功率与边界节点的负荷 之和,将后者除以该节点的电压并取共轭便得到 n 个 边界节点处的等效电流,即图 1 中的 **I**_{lio}

c. 求解多端口简化 Ward 等值网络参数。

利用 b 中求得的 n 个边界节点处的电压和等效 电流,建立如式(2)和(3)所示的量测方程,并基于此 建立如式(4)所示的多端口简化 Ward 等值参数的最 小二乘模型。

取 x_s 中 I^{eq}_{*i*,he} 和 I^{eq}_{*i*,hm} 的初值为 1 p.u., R_{*i*} 和 X_{*i*} 的 初值分别取为 0.03 p.u. 和 0.3 p.u. 。利用最小二乘法^[13] 求得等值网络中的参数 x_s。

d. 求解多端口扩展电压源 Ward 等值网络参数。

建立如式(5)—(13)所示的量测方程,并基于此 建立如式(14)所示的多端口扩展电压源 Ward 等值 参数的最小二乘模型。

将 **c** 中求取的 $I_{i,\text{Re}}^{\text{eq}}$, $I_{i,\text{Im}}^{\text{eq}}$ 和 R_{ij} , X_{ij} 作为多端口扩 展电压源 Ward 等值模型中 $I_{i,\text{Re}}^{t}$, $I_{i,\text{Im}}^{t}$ 和 R_{ij}^{\prime} , X_{ij}^{\prime} 的初 值。将 R_{i} , X_{i} 的初值分别取为 0.03 p.u. 和 0.3 p.u., 将 $E_{i,\text{Re}}^{t}$, $E_{i,\text{Im}}^{t}$ 的初值分别取为 1 p.u.和 0,将 E_{i} 的初 值取为 1 p.u.。并利用最小二乘法求解等值网络的参 数 \mathbf{x}_{eo}

最后,选取 m 个时段中某个时段的数据,基于 功率和电压、电流之间的关系,计算多端口扩展电压 源 Ward 等值网络中虚拟发电机发出的功率 *S_i*。

4 算例分析

本节针对 IEEE 39 节点系统和广东电网,对所提 模型和方法进行校验。在仿真中,基于多个时段的内 网量测信息,利用第3节的计算步骤得到外网等值 参数,然后利用该外网等值参数对内网进行静态安全 评定,通过与等值前全网的精确潮流进行对比来考 察本方法的精度。

4.1 仿真对象及条件

仿真算例系统:IEEE 39节点系统和广东电网。 其中,在 IEEE 39节点系统中,将边界节点设为3个, 分别为节点1、3和17,把2、25、26、27、28、29、30、37、 38作为外网节点,其余为内网节点;按图2所示,将广 东电网划分为内网和外网,其中,边界节点设为2个, 分别为蝶岭站220kV母线和江门站220kV母线。

仿真数据:对于 IEEE 39 节点系统,模拟全网节

图 2 广东电网局部结构图

Fig.2 Partial structure of Guangdong Power Grid

点的有功负荷和无功负荷按 0.3%的比例增长,全网 发电机节点的有功出力按 0.3%同比例增长。不平衡 功率由平衡节点和 PV 节点自然分摊,以此得到多个 时段的实测信息,并采用 3 个相近、连续的模拟数 据;对于广东电网,则直接基于实测的 3 个相隔 30 s 的 SCADA 数据。

等值误差的评估标准:在进行静态安全评定时, 预想事故是否会对系统的安全稳定运行造成威胁, 不仅与潮流计算的绝对误差有关,而且和线路的电 压等级有关,一般而言,电压等级越高的线路能承受 的功率波动幅度越大。类似状态估计合格率指标^①, 采用线路的平均安全误差($\varepsilon_{ave,P}$ 和 $\varepsilon_{ave,Q}$)以及最大安 全误差($\varepsilon_{mx,P}$ 和 $\varepsilon_{mx,Q}$)2种指标。

平均安全误差定义为:

$$\begin{cases} \varepsilon_{\text{ave}_P} = \text{ave} \left\{ \left| \frac{P_l - P_l^{\text{eq}}}{S_{\text{base}}} \right| \times 100 \%, l \in \varphi_{\text{Line}} \right\} \\ \varepsilon_{\text{ave}_Q} = \text{ave} \left\{ \left| \frac{Q_l - Q_l^{\text{eq}}}{S_{\text{base}}} \right| \times 100 \%, l \in \varphi_{\text{Line}} \right\} \end{cases}$$
(15)

其中, $P_l(Q_l)$ 和 $P_l^{eq}(Q_l^{eq})$ 分别为内网线路有功(无功) 的真值和估计值; φ_{Line} 为内网所有线路集合;l为内 网线路编号; S_{base} 为功率基准值,对于 220 kV 线路, S_{base} =304 MV·A,对于 500 kV 线路, S_{base} =1082 MV·A^[10]; ave 表示对表达式求均值。

最大安全误差定义为:

$$\begin{cases} \varepsilon_{\max_{P}} = \max\left\{ \left| \frac{P_{l} - P_{l}^{eq}}{S_{base}} \right| \times 100\%, l \in \varphi_{Line} \right\} \\ \varepsilon_{\max_{Q}} = \max\left\{ \left| \frac{Q_{l} - Q_{l}^{eq}}{S_{base}} \right| \times 100\%, l \in \varphi_{Line} \right\} \end{cases}$$
(16)

其中,max 表示取最大值。

4.2 仿真结果分析

进行静态安全评定时采用的预想事故集^[2]包括 线路开断和发电机开断 2 种扰动,所开断的线路或 者发电机都是位于边界节点附近并且承担了较大功 率的元件。

4.2.1 线路开断

表1和表2分别给出了IEEE 39节点系统和广 东电网在线路开断的情况下,本文方法和简单挂等 值机法的等值误差。从表中可以看出,不论是有功 还是无功等值误差,本文方法都较实际电力系统中 采用的简单挂等值机法低,而且在开断某些线路 时,挂等值机法的最大有功安全误差超过了10%,最 大无功安全误差更是超过了15%;而本文方法的最 大有功安全误差保持在4.6%以内,最大无功安全误 差保持在2.6%以内。

表 1 IEEE 39 节点系统在线路开断时的等值误差 Tab.1 Equivalent errors of IEEE 39-bus system with branch break-off

线路	方法	$arepsilon_{ ext{ave}_P}/\%$	$arepsilon_{ ext{ave}_Q} / \%$	$\varepsilon_{\max_P}/\%$	$\varepsilon_{\max_Q}/\%$
6-7	本文方法	1.1257	0.0964	4.5956	0.5013
	等值机法	2.4949	0.7237	10.5442	2.0634
13-14	本文方法	1.1532	0.2186	4.4569	0.7175
	等值机法	2.3905	0.6570	10.1159	1.9915
14–15	本文方法	0.2713	0.0730	1.8962	0.3815
	等值机法	0.5214	0.3689	2.3372	1.3012
21-22	本文方法	0.0606	0.5611	0.2765	2.5499
	等值机法	0.1545	3.8325	0.5555	15.0720

表 2 广东电网在线路开断时的等值误差

Tab.2 Equivalent errors of Guangdong Power Grid

with Dianch Dieak-on					
线路	方法	$arepsilon_{ ext{ave}_P} / \%$	$arepsilon_{ ext{ave}_{ ext{Q}}} / \%$	$\varepsilon_{\max_P}/\%$	$arepsilon_{ ext{max}_Q} / \%$
江鹤线	本文方法	0.0036	0.0067	0.2424	0.2562
	等值机法	0.0160	0.0074	1.7449	0.2728
高荷线	本文方法	0.0104	0.0127	1.1042	0.4261
	等值机法	0.0352	0.0398	3.7127	1.8677
新南线	本文方法	0.0099	0.0105	1.0648	0.4196
	等值机法	0.0316	0.0316	3.6441	0.9219
竹西线	本文方法	0.0088	0.0060	0.9592	0.4037
	等值机法	0.0277	0.0219	3.3322	0.4255

另外,不论是本文方法还是挂等值机法,当所开 断线路在包含边界节点的环网之内,并且线路上传 输的功率越大时,所造成的等值误差越大。这是因 为开断环网之内的线路时,边界节点附近的潮流会 有较大的变化,而开断前线路上传输的功率越大,潮 流重新分配的波动幅度也越大。

4.2.2 发电机开断

在静态安全评定中,另一种扰动为发电机开断。 表 3 和表 4 分别给出了 IEEE 39 节点系统和广东电 网在发电机开断的情况下,本文方法和简单挂等值 机法的等值误差。从表中可以看出,不论是有功还 是无功等值误差,本文方法都较实际电力系统当中 应用的简单挂等值机法低,而且在开断某些机组时, 挂等值机法的最大有功安全误差超过了 18%,最大 无功安全误差接近 12%;而本文方法的最大有功安

江西电力调度中心. 江西电网调度自动化系统运行管理规程. 2005.

表 3 IEEE 39 节点系统在发电机开断时的等值误差 Tab.3 Equivalent errors of IEEE 39-bus system with generator shut-down

机组	方法	$\mathcal{E}_{\mathrm{ave}_P}/\%$	$arepsilon_{ ext{ave}_Q} / \%$	$\varepsilon_{\max_P}/\%$	$\mathcal{E}_{\max_Q}/\%$
32	本文方法	0.5608	0.4278	1.9206	1.6009
	等值机法	1.2852	3.3654	5.1105	11.9817
34	本文方法	2.9249	0.6228	8.6794	2.1996
	等值机法	5.3715	2.1308	18.6658	6.5711

表 4 广东电网在发电机开断时的等值误差

Tab.4 Equivalent errors of Guangdong Power Grid with generator shut-down

机组	方法	$\mathcal{E}_{\mathrm{ave}_{-}P}/\%$	$arepsilon_{ ext{ave}_Q} / \%$	$\mathcal{E}_{\max_P}/\%$	$\varepsilon_{ m max_Q}/\%$
福能厂	本文方法	0.0027	0.0013	0.2274	0.0548
	等值机法	0.0028	0.0149	0.2532	0.3535
新田厂	本文方法	0.0041	0.0018	0.3398	0.0532
	等值机法	0.0054	0.0105	0.5425	0.2787

全误差保持在8.7%以内,最大无功安全误差保持在 2.2%以内。

从以上仿真结果可以看出,本文所提方法要优 于实际电力系统中采用的简单挂等值机法。因为在 进行线路和发电机的模拟开断操作时,外网相应地 会对内网有一定的电压支撑和功率支援作用,而简 单挂等值机法以不变的等值注入功率代替外网 势 必会产生较大的误差:本文所提的外网等值模型则 可以根据内网的变化作出相应的调整,降低安全稳 定校核的误差。

另外,本文采用的广东电网的 SCADA 数据是存 在随机量测误差的,从表2和表4可以看出,在随机 量测误差的影响下,本文方法的精度依然较高。因 此,即使本文所要求的内网量测数据变化较小,也不 会受随机量测误差较大影响。

结论 5

本文提出了基于内网实测信息的多端口外网静 态等值方法,解决了多端互联网络中外网信息完全 未知的外网等值参数估计问题。该方法只需要内网 多个时段的量测数据,而并不要求内网进行线路开 断操作即可以有效地估计出多端口外网等值网络参 数。IEEE 39 节点系统和广东电网的仿真结果表明, 相对于实际系统中采用的简单挂等值机法,本文方 法能够较大程度地降低安全稳定校核的误差,有助 于电力系统的安全稳定运行。

参考文献:

[1] 张海波,张伯明,王俏文,等. 不同外网等值模型对 EMS 应用效 果影响的试验研究[J]. 电网技术,2006,30(3):1-6.

ZHANG Haibo, ZHANG Boming, WANG Qiaowen, et al. A test investigation on effect of different external network equivalent modes on EMS application[J]. Power System Technology, 2006, 30 (3):1-6.

[2] 张海波,张伯明. 外网等值自动生成系统中地调侧外网估计误差

的阻断[J]. 电力自动化设备,2005,25(7);24-27.

ZHANG Haibo, ZHANG Boming. Method to isolate estimation error from external network in external network real-time equivalent system[J]. Electric Power Automation Equipment, 2005, 25 (7):24-27.

- [3] 吴际舜. 电力系统静态安全分析[M]. 上海:上海交通大学出版社, 1985:87-133.
- [4] WARD J B. Equivalent circuits for power flow studies[J]. Transactions of the American Institute of Electrical Engineers, 1949,68(1):373-382.
- [5] TINNEY W F, POWELL W L. The REI approach to power network equivalents[C] // Proceedings of the PICA Conference. Toronto, Canada: [s.n.], 1977: 314-320.
- [6] 孙宏斌,张伯明,相年德. Ward 型等值的非线性误差分析与应用 [J]. 电力系统自动化,1996,20(9):12-16. SUN Hongbin, ZHANG Boming, XIANG Niande. Nonlinear error analysis and application of Ward-type equivalent[J]. Automation of Electric Power Systems, 1996, 20(9): 12-16.
- [7] 邓继宇,刘俊勇,袁明友. 基于动态负荷特性指标化的集中式低 压减载方案[J]. 电力自动化设备,2011,31(8):72-76. DENG Jiyu, LIU Junyong, YUAN Mingyou. Centralized undervoltage load shedding based on namic load characteristic index [J]. Electric Power Automation Equipment, 2011, 31(8):72-76.
- [8] 王漪,柳焯. 基于戴维南等值的系统参数跟踪估计[J]. 电网技 术,2000,24(11):28-30. WANG Yi, LIU Zhuo. Tracking and estimation of system parameter using Thevein equivalent[J]. Power System Technology, 2000,24(11):28-30.
- [9] 李来福, 于继来, 柳焯. 戴维南等值跟踪的参数漂移问题研究[J]. 中国电机工程学报,2005,25(20):1-5. LI Laifu, YU Jilai, LIU Zhuo. Research on parameters drift problem in tracking Thevenin equivalent[J]. Proceedings of the CSEE, 2005, 25(20): 1-5.
- [10] 颜伟,李世明,陈俊. 基于内网实测信息的两端口外网静态等值 参数估计方法[J]. 中国电机工程学报,2011,31(13):101-106. YAN Wei, LI Shiming, CHEN Jun. Parameter estimation for two-port external network static equivalent model on the basis of internal network measured information [J]. Proceedings of the CSEE, 2011, 31(13): 101-106.
- [11] DEBS A S. Estimation of external network equivalents from internal system data[J]. IEEE Trans on Power Apparatus and Systems, 1975, 94(2): 273-279.
- [12] CONTAXIS G, DEBS A S. Identification of external equivalent for steady state security assessment [J]. IEEE Trans on Power Apparatus and Systems, 1978, 97(2):409-414.
- [13] 于尔铿. 电力系统状态估计[M]. 北京:水利水电出版社,1985: 61-65.

作者简介:

余 娟(1980-),女,湖北荆州人,副教 授,博士,主要研究方向为电力系统自动化、 电压稳定与参数估计以及外网等值(E-mail: cqu.juan.yu@gmail.com);

朱 柳(1988-),男,湖南湘潭人,硕士 研究生,主要研究方向为参数估计与状态估 计以及外网等值(E-mail:zhuliu1988@126. com);

娟

颜 伟(1968-),男,四川乐山人,教授,博士研究生导 师,博士,主要研究方向为电力系统优化运行与控制、风险评 估以及外网等值(E-mail:cquyanwei@21cn.com)。

基于线性功率-电压方程的快速潮流计算方法

张树卿1,童陆园1,洪 潮2,欧开健2 (1. 清华大学 电机工程与应用电子技术系,北京 100084;

2. 南方电网科学研究院,广东 广州 510080)

摘要:针对大电网存在大量电阻电抗比偏大的串联支路的问题,提出并实现了一种快速潮流解算方法,该方 法基于线性功率-电压方程构造迭代修正方程,迭代初值通过基于支路电阻电抗比的 PO 法获得,并在迭代过 程中设置加速收敛乘子以保证收敛性和求解精度。该方法中电压修正方向直观明了.易于编程实现。算例小 系统和南方电网实际系统的潮流解算测试,表明了该方法具有较高的准确性和较好的适应性。

关键词: 潮流: 线性功率-电压方程: 大电网: 大电阻电抗比: 电力系统 中图分类号: TM 744

文献标识码·A

引言 0

随着软件开发、计算机技术的新进展和电力系 统自身对仿真试验技术、手段要求的提高,电力系统 数字仿真与计算手段得到了很大的提升,电网的仿 真规模不断扩大,建模精度也越来越高。例如在南 方电网 2011 年系统计算数据中,节点数和支路数接 近或已超过10000、发电侧诸多小型发电厂站详细 建模,输电网和低电压等级的配电网进一步细化建 模。在这种情况下,电网中大量串联支路的电阻电 抗比值较大,甚至出现支路电阻电抗比值远大于1 的情况。一般小型发电厂站的升压变压器、输配电 网的有载调压变压器和一些配电线路电阻电抗比也 较大,特别是配电网串联支路,其电阻电抗比可能远 大于1。

牛顿-拉夫逊法(NR法)印和快速分解法(PQ

收稿日期:2012-06-04;修回日期:2013-04-24 基金项目:国家重点基础研究发展计划(973计划)项目(2011-CB302805)

Project supported by the National Key Basic Research Program of China(973 Program)(2011CB302805)

DOI: 10.3969/j.issn.1006-6047.2013.06.007

法)[2]以其特有优势在潮流解算中得到广泛应用。但 前者对初值敏感,编程复杂度高^[3],后者是一种固定 斜率的 NR 法,其最大的缺点是形成 B'和 B" 矩阵时 忽略支路电阻,严重影响了方法收敛性[4]。后续有不 少研究在这2种方法的基础上进行改进,如全局潮 流主从分裂法^[5]、保留方程非线性的潮流计算^[6]、带 最优乘子潮流计算[7-8]、柔性潮流[9]等,但仍难以兼顾 方法的收敛性、计算效率和实现的复杂度,甚至带来 附加问题,如文献[10]改进了 PQ 法,虽能在一定程 度上打破支路电阻电抗比的限制,但修改了原系统 的网架结构。

本文针对目前大电网计算发电厂站和输配电网 详细建模,电网出现了大量电阻电抗比偏大的串联 支路的情况,提出并实现了基于线性功率-电压方程 的大电网快速潮流解算方法。本文具体给出了该方 法完整的计算流程和若干实用技巧,例如限制串联 支路电阻电抗比的 PO 法计算获得潮流迭代初值。 实验测试表明该方法具有较高的准确性和较好的 适应性。

Static equivalence of external multi-port network based on measured information of internal network

YU Juan¹, ZHU Liu¹, YAN Wei¹, ZHAO Xia¹, LU Jiangang², GUO Wenxin²

(1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing

University, Chongqing 400030, China; 2. Guangdong Electric Power Dispatching Center, Guangzhou 510600, China) Abstract: A method of static equivalence based on the measured information of internal network is proposed to estimate the equivalent network of external multi-port network and its parameters when its information is completely unknown. It adopts the two-stage estimation scheme to set the measuring equation of equivalent external network parameters and its two-stage least squares model according to the constraint relation between the equivalent parameters of external network and the internal network information, which is measured without the break-off of internal network branch, and then applies the least squares method to obtain the equivalent parameters of external multi-port network. The simulative results for IEEE 39-bus system and Guangdong Power Grid verify the correctness of the proposed method.

Key words: static security analysis; static equivalence; multi-port; least squares; measured information; models