第 33 卷第 6 期 2013 年 6 月

94

一种同杆架设多回线路简化零序互感计算方法

许扬1.2,陆于平1,袁宇波2

(1. 东南大学 电气工程学院,江苏 南京 210096;2. 江苏省电力公司电力科学研究院,江苏 南京 210036)

摘要:提出一种同杆架设多回线零序互感计算方法,指出线路的零序互感矩阵是一组独立的参数,线路不同 运行方式下的零序参数可根据这些独立参数,由矩阵变换的方法计算得到。该方法不需要重复的试验实测, 极大简化了零序互感参数的获取过程,提高了工作效率。同杆4回线路实际现场测试实例结果验证了该方法 是正确的,且具有较高的精度。

关键词:同杆多回线路;零序互感;检修方式;线路;矩阵变换;继电保护;接地 中图分类号:TM 77 文献标识码:A DOI: 10.3969/j.issn.1006-6047.2013.06.017

0 引言

随着电网结构的快速发展,由于建设走廊的限制、土地资源及经济性等方面的原因,同杆双回线路 甚至同杆多回线路的局面会大量出现。由于线路故 障绝大多数都是接地故障,因此零序互感会影响电 网短路电流的计算,从而影响继电保护定值整定,准 确的零序互感参数对于电网继电保护的整定计算显 得非常重要^[1-2]。

对于不同电压等级的线路,公用同一杆塔更是 多见,相互之间的影响已不能忽视,在个别杆塔上甚 至有多达7回不同线路。由于目前还多没有考虑不 同电压等级的互感影响,给继电保护的安全运行带 来了威胁^[3]。

由于目前要开展不同电压等级之间的零序互感 影响的实测工作存在较大困难,并且线路两端的变 电站各不相同,调度申请的停电时间有限,使得对每 一种运行方式进行实际测试存在困难。同时对其相 互之间的影响必须有理论计算,进而提高零序互感 测试准确性。

1 同杆多回线路的零序互感

超高压线路保护整定需要正确的线路零序自感和互感值,不正确的零序值会引起保护灵敏度下降和 超范围动作^[48]。其线路零序参数可通过卡松(Carson) 公式来计算。

对于同杆多回线路,其相邻线路会对本线路的 零序参数产生影响。特别是当相邻线路在运行或退 出运行时,相邻线路接地运行方式发生变化的情况 下,零序互感参数都会发生变化,而这些变化要全 部测量是不可能的,也是不现实的。

1.1 同杆双回线路

同杆双回线路的零序互感测量,只需要涉及到1 个零序互感参数,是互感影响最简单的一种,目前国 内已有成熟的计算经验。

1.2 同杆 3 回线路

对 3 回及以上输电线路,除了存在任意 2 回线路之间的互感外,还涉及在不同的检修方式下,任意 2 回线路之间的等效互感的参数。对 3 回线路参数, 有 3 个零序自阻抗和 3 个零序互阻抗,在考虑任意 1 回线路检修时,又派生出 2 回未检修线路的 2 个零 序自阻抗以及 1 个它们之间的零序互感(3×3),同 时当考虑 2 回线路检修时,共有 3 个零序自阻抗参数, 这样同杆 3 回线路共有 18 个零序参数需要确定。

1.3 同杆多回线路

若考虑同杆 4 回线路,按上面同样的排列组合 方法,共有 94 个零序参数需要确定。如果线路更 多,那线路参数计算的复杂度将以几何级数增加。

1.4 不同电压等级的同杆多回线路

不同电压等级的线路同杆架设,一般存在电压 等级越高的输电线路越长、电压等级越低的输电线 路越短的特点。并且低电压等级的线路不会和高电 压等级的线路完全重合^[9-15],大都是部分重合杆塔。 并且由于 220/330 kV 的输电线路并不是所有的变 压器中性点都接地,接地点运行方式的改变使得互感 的影响复杂多变。对于这种情况,只有通过有效的计 算方法才能获取零序互感的最大影响。

因此,从继电保护的发展来看,迫切需要能方便 计算出各种互感参数的方法,以节约时间,并提高参 数获取的效率。

2 同杆 3 回线路等值阻抗的计算

一般而言,同杆 3 回线路互感线路的零序网络如 图 1 所示,网络方程可以表示为:

收稿日期:2013-01-14;修回日期:2013-04-15

基金项目:国家自然科学基金资助项目(50977012)

Project supported by the National Natural Science Foundation of China(50977012)

图 1 同杆 3 回线路零序网络图

Fig.1 Zero-sequence network of three-circuit parallel transmission line

$$U_{1230} = Z_{1230} I_{1230} \tag{1}$$

$$\begin{bmatrix} \boldsymbol{U}_{10} \\ \boldsymbol{U}_{20} \\ \boldsymbol{U}_{30} \end{bmatrix} = \begin{bmatrix} Z_{110} & Z_{120} & Z_{130} \\ Z_{210} & Z_{220} & Z_{230} \\ Z_{310} & Z_{320} & Z_{330} \end{bmatrix} \begin{bmatrix} \boldsymbol{I}_{10} \\ \boldsymbol{I}_{20} \\ \boldsymbol{I}_{30} \end{bmatrix}$$

其中, Z_{1230} 为3×3的互感阻抗矩阵,其为对称矩阵; U_{1230} 为零序电压相量; I_{1230} 为零序电流相量; U_{10} 、 U_{20} 、 U_{30} 分别为第1、2、3回线路的零序电流; I_{10} 、 I_{20} 、 I_{30} 分 别为第1、2、3回线路的零序电流; Z_{110} 为第1回线路 的零序自阻抗, Z_{120} 为线路2对线路1的零序互感, 其他的阻抗变量依此类推。线路的零序互感矩阵 Z_{1230} 为一个原始的独立参数,也是线路参数测试人 员必须要测量的参数,例如当线路架设好后, Z_{120} 并 不受第3回线路的空间距离和运行方式的影响,本 文所提的计算方法,可根据这些独立参数推导出检 修方式下的参数,而不需要另外测量。

当考虑第3回线路检修时(线路两端经导线接地),等效为U₃₀=0V,代入式(1),可得到0=Z₃₁₀I₁₀+ Z₃₂₀I₂₀+Z₃₃₀I₃₀,解得I₃₀:

$$I_{30} = \begin{bmatrix} -\frac{Z_{310}}{Z_{330}} & -\frac{Z_{320}}{Z_{330}} \end{bmatrix} \begin{bmatrix} I_{10} \\ I_{20} \end{bmatrix}$$
(2)

将式(2)代入式(1)可得到第3回线路检修接地时,第1、2回线路之间的零序互感参数和自感参数的 等效值为式(3)所示的2阶矩阵。

$$\begin{bmatrix} \boldsymbol{U}_{10} \\ \boldsymbol{U}_{20} \end{bmatrix} = \begin{vmatrix} Z_{110} - Z_{130} \frac{Z_{310}}{Z_{330}} & Z_{120} - Z_{130} \frac{Z_{320}}{Z_{330}} \\ Z_{210} - Z_{230} \frac{Z_{310}}{Z_{330}} & Z_{220} - Z_{230} \frac{Z_{320}}{Z_{330}} \end{vmatrix} \begin{bmatrix} \boldsymbol{I}_{10} \\ \boldsymbol{I}_{20} \end{bmatrix}$$
(3)

即当第3回线路检修时,第1回线路的零序自阻抗 变为 $Z_{110}-Z_{130}Z_{310}/Z_{330}$,第1、2回线路之间的互感变 为 $Z_{120}-Z_{130}Z_{320}/Z_{330}$,因此考虑第3回线路检修(两端 接地)情况下,相应的第1、2回线路的零序自感、零 序互感参数都有不同程度的减小,这从物理概念上 讲,类似于一个三圈变压器,其中1个绕组短路,另 外2个绕组的等效阻抗都会降低。

如果考虑第3回线路停运(两端不接地)情况, 那么第1、2回线路之间的零序参数将保持不变,还 是原来的零序互感矩阵:

$$\begin{bmatrix} Z_{110} & Z_{120} \\ Z_{210} & Z_{220} \end{bmatrix}$$
(4)

同样,当要考虑第1、2回线路检修时,可以采用 上面的方法来等同计算。

3 同杆架设 n 回线路的零序等值阻抗计算

当同杆线路数超过3回时,用上面的手工推导计 算等效零序阻抗参数就很不方便,需用矩阵运算的 方法来获得,下面将推导一个通用的零序互感参数计 算方法。

对于同杆架设 n 回线路,如果有 m 条线路运行, n-m 条线路检修(接地),m 条运行线路之间的等效 零序阻抗矩阵推算方法如下。

具有 n 条同杆并架的线路满足 $U_0=Z_0I_0$,其中 U_0 为 n 回线路的零序电压相量, $U_0=[U_{10}\cdots U_{m0} U_{(m+1)0}\cdots U_{n0}]^T$, I_0 为 n 回线路的零序电流相量, $I_0=[I_{10}\cdots I_{m0} I_{(m+1)0}\cdots I_{n0}]^T$,定义 n 回线之间的零序互感矩阵为:

$$\mathbf{Z}_{0} = \begin{bmatrix} Z_{110} & \cdots & Z_{1m0} & Z_{1(m+1)0} & \cdots & Z_{1n0} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ Z_{m10} & \cdots & Z_{mm0} & Z_{m(m+1)0} & \cdots & Z_{mn0} \\ Z_{(m+1)10} & \cdots & Z_{(m+1)m0} & Z_{(m+1)(m+1)0} & \cdots & Z_{(m+1)n0} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ Z_{n10} & \cdots & Z_{nm0} & Z_{n(m+1)0} & \cdots & Z_{nn0} \end{bmatrix}$$

其中,Z₁₁₀为第1回线的零序自阻抗,Z_{1m0}为第m回 线对第1回线的零序互感,其他阻抗变量的物理含 义类推。

将阻抗矩阵 Z。分块定义:

$$\boldsymbol{A} = \begin{bmatrix} Z_{110} & \cdots & Z_{1m0} \\ \vdots & \ddots & \vdots \\ Z_{m10} & \cdots & Z_{mm0} \end{bmatrix}, \quad \boldsymbol{B} = \begin{bmatrix} Z_{1(m+1)0} & \cdots & Z_{1n0} \\ \vdots & \ddots & \vdots \\ Z_{m(m+1)0} & \cdots & Z_{mm0} \end{bmatrix}$$
$$\boldsymbol{C} = \begin{bmatrix} Z_{(m+1)10} & \cdots & Z_{(m+1)m0} \\ \vdots & \ddots & \vdots \\ Z_{n10} & \cdots & Z_{nm0} \end{bmatrix}$$
$$\boldsymbol{D} = \begin{bmatrix} Z_{(m+1)(m+1)0} & \cdots & Z_{(m+1)n0} \\ \vdots & \ddots & \vdots \\ Z_{n(m+1)0} & \cdots & Z_{nn0} \end{bmatrix}$$

则同杆4回线路之间的零序电压方程表达为:

$$\begin{bmatrix} \boldsymbol{U}_{1,\dots,m0} \\ \boldsymbol{U}_{m+1,\dots,n0} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{bmatrix} \begin{bmatrix} \boldsymbol{I}_{1,\dots,m0} \\ \boldsymbol{I}_{m+1,\dots,n0} \end{bmatrix}$$
(5)

分解得到:

$$\boldsymbol{U}_{1,\dots,m0} = \boldsymbol{A} \boldsymbol{I}_{1,\dots,m0} + \boldsymbol{B} \boldsymbol{I}_{m+1,\dots,m0}$$
(6)

$$\boldsymbol{U}_{m+1,\dots,n0} = \boldsymbol{C} \boldsymbol{I}_{1,\dots,m0} + \boldsymbol{D} \boldsymbol{I}_{m+1,\dots,n0}$$
(7)

其中, $U_{1,\dots,m0} = [U_{10} \cdots U_{m0}]^T$ 为运行线路的零序电压相量, $U_{m+1,\dots,m0} = [U_{(m+1)0} \cdots U_{n0}]^T$ 为检修线路的零序电压相量, $I_{1,\dots,m0} = [I_{10} \cdots I_{m0}]^T$ 为运行线路的零序电流相量, $I_{m+1,\dots,m0} = [I_{(m+1)0} \cdots I_{n0}]^T$ 为检修线路的零序电流相量。 解式(7)得到:

$$I_{m+1,...,n0} = D^{-1}(U_{m+1,...,n0} - CI_{1,...,m0})$$

代人式(6)得到:
 $U_{1,...,m0} = AI_{1,...,m0} + BD^{-1}(U_{m+1,...,n0} - CI_{1,...,m0})$
展开得到.

 $\boldsymbol{U}_{1,\dots,m0} - \boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{U}_{m+1,\dots,m0} = (\boldsymbol{A} - \boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C})\boldsymbol{I}_{1,\dots,m0}$

当其他 n-m 回线路检修并且两端挂接地线后, $U_{m+1,\dots,n0}=0$,因此 m 回运行线路之间的等效零序阻 抗矩阵为:

$$\mathbf{Z}_{1-meg} = \mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} \tag{8}$$

在线路参数测试人员得到独立的零序阻抗矩阵 之后,根据式(8)就可以得到检修方式下的零序阻抗 矩阵,而不需要进行额外的测试工作。下面根据一 个实际的工程案例,在测量出独立的零序阻抗矩阵 后,又进行了检修方式下的实测,并与本文所提的根 据独立零序互感参数,用矩阵变换的方法推算的检 修方式下的零序互感参数进行了比较,验证本文所 提方法的有效性和准确性。

4 不同电压等级、不同长度同杆理论参数 计算

对于不同电压等级的零序互感计算可以按照以 下方法进行。

4.1 分段

首先按照实际线路的走线对不同电压等级的线路进行分段,把有互感的线路段独立出来。

如图 2 所示,线路 AA'为 500 kV,线路 BB'和线路 CC'为 220 kV。其中各有一段线路为同杆架设。 在这种情况下,必须要考虑 220 kV 线路对 500 kV 线路零序互感的影响,同时还必须考虑 500 kV 线路对 220 kV 线路零序互感的影响。

图 2 同杆多回线路分段示意图 Fig.2 Segmentation of multi-circuit parallel transmission line

对 500 kV 和 220 kV 线路,可以按同杆开始和 结束点进行分段,同时对于没有同杆线路的区间可 以合并成一段。

可将 500 kV 的 AA'线路分成 4 段: Aa_1+a_4A' , $a_1a_2,a_2a_3,a_3a_{4\circ}$ 将 220 kV 的 BB'线路分成 3 段: Bb_1+b_3B' , b_1b_2,b_2b_3 。将 220 kV 的 CC'线路分成 3 段: $Cc_1 + c_3C', c_1c_2, c_2c_{3\circ}$

4.2 计算线路两两之间的互感和分段

通过线路参数可以计算出两两之间的互感,同 时应该注意到互感的线路长度不是线路全长,而是 线路同杆的长度。

图 2 中线路 AA'与 BB'之间互感为 M^{AB},是线路 a₁a₃ 长度的互感;线路 AA'与 CC'之间互感为 M^{AC}, 是线路 a₂a₄ 长度的互感;线路 BB'与 CC'之间互感 为 M^{BC},是线路 a₂a₃ 长度的互感。

按照线路实际长度对互感分段:

$$M^{AB} = M^{AB}_{a_{1}a_{2}} + M^{AB}_{a_{2}a_{3}}$$
(9)
$$M^{AB}_{a_{1}a_{2}} = M^{AB} \frac{L_{a_{1}a_{2}}}{L}$$

$$M_{a_{2}a_{3}}^{AB} = M^{AB} \frac{L_{a_{2}a_{3}}}{L_{a_{1}a_{3}}}$$

其中,L为线路长度。

类推:

$$M^{AC} = M^{AC}_{a_{2}a_{3}} + M^{AC}_{a_{3}a_{4}} \tag{10}$$

$$M^{BC} = M^{BC}_{a_3a_3} \tag{11}$$

这样就获得了每段的互感两两影响因素。

4.3 简化互感的影响计算

从以上分析可以看出,计算的复杂性和线路回数、分段数、接地点运行方式、检修方式都有关,并 且每一个因素所起的作用都使计算量几何增长,如 果同时考虑以上因素,就必须通过计算机才能完成 全部计算。

事实上每个计算都很重要,但对于继电保护的 整定要求,往往只要求影响最大和最小的互感参数。

$$M_{\max} = \sum_{i=1}^{n} M_{\max,i} \tag{12}$$

$$M_{\min} = \sum_{i=1}^{n} M_{\min,i} \tag{13}$$

其中,n为线路具有互感的段数。

例如对于图 2 的 AA'线路有:

 $M_{\max} = M_{\max.a_1a_2} + M_{\max.a_2a_3} + M_{\max.a_3a_4}$

 $M_{\min} = M_{\min.a_1a_2} + M_{\min.a_2a_3} + M_{\min.a_3a_4}$

更进一步地,如果保护原理有方式自适应,只要 考虑有限的自适应方式,根据自适应方式限制最大 最小值的选取就可以实现。这样可以极大减少软件 的输出结果,方便继电保护应用。

5 获取最大、最小互感值的软件实现

图 3 为继电保护整定互感计算软件实现框图, 在框图中根据需要,并不需计算全部的可能组合,同 时又保证了最大、最小互感的不丢失,极大减少了工 作量。

从图 3 中可以看出,如果计算每段参数后再考 虑两两之间的组合,其结果将非常多。但是继电保 护并不需要这些参数,继电保护的要求是不遗漏对保 护有影响的最大、最小参数,因此,采用简单的最大、 最小各自相加就可以保证继电保护整定所需要的 参数。

另外软件还可以针对性地输出指定运行方式下 所需要的参数。

6 仿真和现场验证

现场实际案例采用江苏电网实际运行的一个典型网络参数,首先通过本文仿真模型的计算值和实际的测量值进行分析对比,以验证本文提出方法的正确性。同杆4回廻峰山(宁东南)—溧水/龙山输电线路空间位置如图4所示,其在电力系统中的电网线示意图如图5所示。

仿真计算的实际线路为同杆 4 回廻峰山—溧 水/龙山输电线路,是联系 500 kV 廻峰山变电所与 220 kV 溧水变电所和龙山变电所的输电线路。其中 220 kV 廻龙线(2Y01 线)与 220 kV 廻凓 3 号线 (2Y02 线)同杆部分为 54.6 km,220 kV 廻凓 1 号线 (2Y05 线)与 220 kV 廻凓 2 号线(2Y06 线)同杆部 分为 19.7 km,这其中 4 回同杆部分长 11.65 km。

图 4 同杆 4 回线路空间位置图

Fig.4 Layout of four-circuit parallel transmission line

图 5 宁东南同杆 4 回线路系统图 Fig.5 System diagram of NDN project

线路原始参数见表1。

表 1 线路结构参数 Tab.1 Structural parameters of line

线路名称	导线规格	线路长度/km	
	2×LGJ-400/35	0.381	
500 kV 廻龙线	$4 \times LGJ - 630/45$	54.6	
(2Y01 线)	LGJ - 400/35	0.269	
	LGJQ - 400	5.785	
	$2 \times LGJ - 400/35$	0.381	
500 kV 廻溧 3 号线	$4 \times LGJ - 630/45$	54.6	
(2Y02 线)	LGJ-400/35	0.251	
	LGJQ - 400	27.032	
220 kV 廻凓 2 号线 (2Y06 线)	2×LGJ-400/35	26.921	
220 kV 廻溧 1 号线	2×LGJ-400/35	19.7	
(2Y05 线)	LGJ-400/35	7.4	

为了给电力系统的短路计算及继电保护整定计 算提供实测的线路参数,对廻峰山(宁东南)的4条 出线进行线路工频参数测试。

为了验证上面提出的基于矩阵变换的等效互感 计算方法的正确性,现场安排了检修方式下的实测, 并与理论计算值进行比较。

现场首先进行了独立零序互感参数的测试,得 到零序互感矩阵如下(单位为Ω):

Z ₀ =	51.9620	23.8326	6.2925	6.1137	
	23.8326	80.2380	6.3114	7.4325	(14)
	6.2925	6.3114	28.2010	12.6417	(14)
	6.1137	7.4325	12.6417	25.7870	

检修方式下的零序互感可由式(14)的独立零序 阻抗矩阵通过矩阵变换获得。实测值和等效计算值 如表 2 所示(单位为 Ω)。

从表2可看出,实测值和理论值非常接近,这也 验证了基于矩阵变换来计算检修方式下等效零序阻 抗的有效性,可在同杆多回线路参数的实测工作中进 行推广应用。

表 2 实测值和矩阵变换等效计算值之间的比较

Tab.2 Comparison between measurement and equivalent value calculated by transformation matrix

检修方式	参数名称	测量值	等效计算值
2Y01、2Y05 线检修	2Y02 线与 2Y06 线互感	2.7696	3.143
	2Y02 线自感	69.3030	68.880
	2Y06 线自感	20.0910	19.906
2Y02、2Y06 线检修	2Y01 线与 2Y05 线互感	2.3360	2.541
	2Y01 线自感	43.9630	44.275
	2Y05 线自感	21.5020	21.913
2Y01、2Y02 线检修	2Y05 线与 2Y06 线互感	11.6900	11.673
	2Y05 线自感	26.3930	27.270
	2Y06 线自感	24.9150	24.759

7 结论

针对电力系统同杆多回线对互感的影响,本文 提出了有效的解决方法,得出以下结论:

a. 提出一种通过两两互感计算多互感的矩阵新 方法,其计算精度高、速度快、效率高;

b.提出符合电力系统要求的分段计算方法,解决了不同电压等级线路同杆不同长度的互感计算问题:

c.提出计算分段影响寻找最大、最小影响参数 的简化方法,该方法满足继电保护需要,和采用全 方法计算比较,该方法计算量大幅下降;

d. 软件提供实用的控制方法,可按需输出参数;

e. 将利用本文方法获得的理论值与实测值进行 比较,其结果非常接近,表明本文方法具有较高的精 度,提高了现场测试效率。

参考文献:

- [1] 王梅义. 高压电网继电保护运行技术[M]. 北京:电力工业出版 社,1981:6.
- [2] 朱声石. 高压电网继电保护原理与技术[M]. 北京:中国电力出版社,2005:4-10.
- [3] 国家电力调度通信中心.电力系统继电保护实用技术问答[M].2版.北京:中国电力出版社,2004:251-254.
- [4] 索南加乐,孟祥来,陈勇,等.基于故障类型的零序方向元件[J]. 中国电机工程学报,2007,27(1):25-30.
 SUONAN Jiale, MENG Xianglai, CHEN Yong, et al. A novel zero sequence directional element based on fault type[J]. Proceedings
- of the CSEE,2007,27(1):25-30. [5] 杜丁香,周泽昕,李岩军,等. 1000 kV 交流同塔双回输电线路的 电气特性仿真分析[J]. 电网技术,2011,35(3):20-25. DU Dingxiang,ZHOU Zexin,LI Yanjun,et al. Simulation analysis on electrical characteristics of 1000 kV AC double-circuit transmission lines on the same tower[J]. Power System Technology, 2011,35(3):20-25.
- [6] 张洋,王伟,樊占峰. 基于虚拟零序电流的双回线接地距离保护 原理[J]. 电力系统保护与控制,2011,39(21):55-59.

ZHANG Yang, WANG Wei, FAN Zhanfeng. A novel scheme of ground distance protection for double circuit line based on virtual zero sequence current [J]. Power System Protection and Control, 2011, 39(21);55-59.

[7] 刘天斌,张月品. 同塔并架线路接地距离保护零序电流补偿系数

整定[J]. 电力系统及其自动化,2008,32(10):101-103.

LIU Tianbin,ZHANG Yuepin. Setting calculation of zero compensation coefficient in ground distance protection for double circuit lines on the same tower[J]. Automation of Electric Power Systems,2008,32(10):101-103.

- [8] 胡丹晖,蔡汉生,涂彩琪,等. 500 kV 同杆并架双回线路电气特性研究[J]. 高电压技术,2005,31(4):21-23.
 HU Danhui,CAI Hansheng,TU Caiqi,et al. Study on the electrical characteristic of 500 kV common tower double transmission line [J]. High Voltage Engineering,2005,31(4):21-23.
- [9] 陈少华,梁志雄,孙何洪. 电力网超高压平行双回线路弱电强磁 现象仿真研究[J]. 电力系统保护与控制,2008,36(22):1-7,14. CHEN Shaohua,LIANG Zhixiong,SUN Hehong. Simulation and research of weak current and strong magnetic phenomenon in EHV parallel double lines[J]. Power System Protection and Control, 2008,36(22):1-7,14.
- [10] 俞波,范暐,李轶群,等. 保护在同杆双回线动模试验中的动作 分析[J]. 电力自动化设备,2002,22(11):11-15.
 YU Bo,FAN Wei,LI Yiqun, et al. Performance analysis of line protection in dynamic simulation of double lines on same tower[J]. Electric Power Automation Equipment,2002,22(11): 11-15.
- [11] 索南加乐,刘东,谢静,等.同杆并架输电线路跨线故障识别元件[J].电力系统自动化,2007,31(1):48-53.
 SUONAN Jiale,LIU Dong,XIE Jing,et al. Cross country fault identifier for power system transmission line on a same pole [J]. Automation of Electric Power Systems,2007,31(1):48-53.
 [12] 毛鹏,董肖红,杜肖功,等. 输电线路复故障情况下选相元件研
- 12] 毛鹏,重肖红,杜肖切,等. 辅电线路复故障情况下选相元件研究[J]. 电力系统自动化,2005,29(1):53-56.
 MAO Peng,DONG Xiaohong,DU Xiaogong,et al. Study of faulted phase selector element for duplicate faults of transmission lines[J]. Automation of Electric Power Systems,2005,29(1): 53-56.
- [13] 王春娜,梁志瑞,薛志英,等. 互感线路零序参数带电测量方法 研究[J]. 电力自动化设备,2008,28(4):87-90.
 WANG Chunna,LIANG Zhirui,XUE Zhiying, et al. Live line measurement of zero-sequence parameters for transmission lines with mutual inductance[J]. Electric Power Automation Equip-
- ment,2008,28(4):87-90.
 [14] 刘凯,索南加乐,邓旭阳,等. 基于故障分量正序、负序和零序综合阻抗的线路纵联保护新原理[J]. 电力自动化设备,2010,30 (4):21-25.

LIU Kai, SUONAN Jiale, DENG Xuyang, et al. Principle of pilot line protection based on integrated impedance of fault component [J]. Electric Power Automation Equipment, 2010, 30 (4):21-25.

[15] 刘凯,索南加乐,康小宁,等. 一种新的综合阻抗计算方法[J]. 电力自动化设备,2010,30(1):49-52.
LIU Kai,SUONAN Jiale,KANG Xiaoning, et al. Improvement of integrated impedance calculation[J]. Electric Power Automation Equipment,2010,30(1):49-52.

作者简介:

许 扬(1965-),男,江苏扬州人,高级工程师,主要从事 电力系统继电保护的研究与技术管理工作:

陆于平(1962-),男,江苏丹阳人,教授,博士研究生导师,主要从事电力系统继电保护及数字主设备保护的教学和 科研工作(E-mail:lyp_cn@tom.com);

袁宇波(1975-),男,江苏丹阳人,高级工程师,博士,主 要从事电力系统继电保护的研究。

基于 LDO 电荷泵的快速瞬态响应的 DC-DC 电源

王 翀,蒋 鸿

(长园深瑞继保自动化有限公司 南京技术中心,江苏 南京 211106)

摘要:为了提高 DC-DC 电源的瞬态响应能力,提出一种新的电荷泵结构。该电荷泵由主开关电源模块和低压 差稳压器(LDO)模块组成。主开关电源模块在稳态和瞬态响应时均处于工作状态;LDO 模块由功率管、误差放 大器和反馈环路组成,稳态时功率管关断,降低系统的功耗;当负载电流突然变化,引起输出电压变化时,LDO 模块启动,其提供的充/放电电流达到理想值,使负载电流迅速恢复,将输出电压箝位在一个设定的阈值内。仿 真结果表明,所提电荷泵在负载电流的变化较大时,可以很好地改善系统输出电压的瞬态响应,避免电压过冲。 关键词: DC-DC 电源: 瞬态响应: 电荷泵: 低压差稳压器: 仿真

中图分类号: TP 47 文献标识码: A

DOI: 10.3969/j.issn.1006-6047.2013.06.018

0 引言

新一代的微处理器、DSP 和片上系统(SOC)在手 持设备上得到了广泛应用,其功耗低、低压输出和负 载快速变化的特点,对其供电的电压变换器提出了 苛刻的要求^[1]。DC-DC 电压变换器因体积小、重量 轻、效率高、性能稳定等优点在电子、电器设备、家电 领域得到了广泛的应用[2]。这类交换式转换器至少 会使用1个电感器作为电能储存元件,但当其负载 发生较大变化时,因为输出电感的存在,电感中的 电流无法快速变化来满足负载电流的变化,因此输出 电容会通过放电、充电的形式,来补偿负载电流和电 感中电流之间的差值,直到电感电流上升或下降到 负载电流的水平。由于输出电容寄生电阻上的压降 和电容两端电荷的变化,导致输出电容两端电压即 输出电压会发生较大变化,且其恢复时间比较长,这 在对输出电压要求性能比较高的电源中是坚决不允 许的[3]。

收稿日期:2012-02-23;修回日期:2013-05-11

目前有很多提高开关电源瞬态响应的技术^[4-11], 主要有3种。

a.改善环路控制如 U² 控制、U²C 控制、迟滞控 制等非线性控制,通过提高其开环环路单位增益带 宽来提高开关电源的瞬态响应。此技术在负载电流 发生较小变化时效果很明显,但是当负载电流发生 较大突变,反馈环路发生饱和(占空比为1或0)时, 电源为一个开环系统,输出电感中的电流线性增加 或减少。很明显,输出电压会继续增加或减少,因为 输出电感中的电流无法快速响应满足其要求。因此 在方法 b 中,采用步进的输出电感来提高瞬态响应。

b. 当负载电流发生变化时把输出电感调至较小的瞬态值,使得电感中电流可以快速变化至负载电流;当开关电源工作在稳态时,把输出电感调至较大的稳态值,保证系统稳定工作,降低电压纹波。

c.采用一个辅助的电荷泵^[11-12],主开关电源一 直工作,而此电荷泵仅在瞬态响应时工作,向负载提 供需要的电流,这样既不影响转化效率,又可以提高 其瞬态响应。目前,该技术广泛使用一个输出电感

Calculation of zero-sequence mutual inductance for multi-circuit parallel transmission line

XU Yang^{1,2}, LU Yuping¹, YUAN Yubo²

(1. School of Electrical Engineering, Southeast University, Nanjing 210096, China;

2. Electric Power Research Institute of Jiangsu Electric Power Company, Nanjing 210036, China)

Abstract: A method for calculating the zero-sequence mutual inductance of multi-circuit parallel transmission line on the same tower is proposed. It is pointed out that, the zero-sequence mutual inductance matrix is a set of independent parameters, based on which, the zero-sequence parameters of transmission line in different operation modes can be deduced by matrix transformation. Without the repeating experimental measurement, the proposed method simplifies significantly the acquisition of zero-sequence mutual inductance, which improves the work efficiency. Results of field test for a four-circuit parallel transmission line show its correctness and accuracy.

Key words: multi-circuit parallel transmission line; zero-sequence mutual inductance; repair mode; electric lines; matrix transformation; relay protection; electric grounding