# 利用暂态波形伸缩变换的谐振接地系统故障选线方法

郭谋发,郑新桃,杨耿杰,高伟,缪希仁 (福州大学 电气工程与自动化学院,福建 福州 350116)

摘要: 谐振接地系统单相接地时,非故障线路间暂态零序电流波形的相似度高于故障线路与非故障线路暂 态零序电流波形的相似度。非故障线路间的相似度主要与线路对地分布电容有关。采用2条线路对地等效电 容的比值对暂态零序电流波形进行伸缩变换,以提高波形间的相似度及选线裕度。基于分段相平面分析,求 出各线路伸缩变换后暂态零序电流波形的各段相平面轨迹到确定点的欧氏距离,构造可综合表征暂态零序 电流波形幅值和极性信息的特征矩阵,对特征矩阵做模糊 K 均值聚类,选出故障线路。在噪声干扰、电弧故 障、采样不同步、不同时间窗等情况下分别对所提方法进行仿真验证,结果表明所提算法适应性强,选线准 确、可靠。

关键词:谐振接地系统;谐振;接地;故障选线;暂态零序电流;伸缩变换;相平面分析;模糊 K 均值 聚类

中图分类号: TM 73 文献标识码: A

## DOI: 10.3969/j.issn.1006-6047.2014.09.006

# 0 引言

谐振接地系统具有提高系统的供电可靠性、降低雷击损害事故率、抗通信设备电磁干扰等优点,广泛应用于中压配电网。由于谐振接地系统发生单相接地故障的情况复杂多变、故障电流较微弱,且常伴有间歇性电弧,其接地选线问题仍未得到很好解决[1-7]。

利用比故障信号稳态量大若干倍的故障信号暂 态量进行选线保护是近年来该领域的研究热点[8-10]: 所采用的信号量主要有零序电流、零序电压、行波及 相电流<sup>[11]</sup>等:特征量主要有能量、突变量、幅值、极性 及波形等:各线路的故障暂态零序电流波形中同时 包含了极性、幅值等信息。利用谐振接地系统发生 单相接地故障后,非故障线路间的暂态零序电流波 形相似,而故障线路与非故障线路暂态零序电流波 形差别较大的特点,对暂态零序电流波形或其特征 频带做相关分析或灰色关联分析,进而确定接地故障 线路,是一个很好的选线思路[12-14]。文献[15]直接对 故障后各线路首个周期的暂态零序电流做两两相关 分析;文献[16]将故障后各线路零序电流第1个周 期的采样数据减去故障前一个周期对应的采样数 据,得到暂态零序电流故障分量,并对其做两两相 关分析,利用综合相似度矩阵进行故障选线;文献[17] 提出一种改进的灰色关联分析算法,能自动滤除噪 声的干扰,增大故障线路零序电流波形和非故障线 路零序电流波形间的差异性,提高了选线裕度。

各非故障线路的暂态零序电流大小主要与线路 的零序分布电容相关,若采用欧氏距离、曼哈顿距离

收稿日期:2013-10-12:修回日期:2014-07-23

基金项目:国家自然科学基金资助项目(51377023);福建省自然科学基金资助项目(2012J01203)

等方法直接对波形进行相似性分析,暂态零序电流 幅值的不同会降低非故障线路零序电流波形间的相 似度,基于此提出一种波形伸缩变换方法,采用2条 线路对地等效电容的比值对暂态零序电流波形进行 伸缩变换,以提高非故障线路的暂态零序电流波形 间的相似度及选线裕度。对各线路伸缩变换后的故 障暂态零序电流波形作分段线性化处理及分段相平 面变换,计算各线路每段故障暂态零序电流波形所 有相点到确定点的欧氏距离,形成包含暂态零序电 流波形幅值和极性信息的特征矩阵,用模糊 K 均值 聚类(FKM)对特征矩阵进行聚类,选出故障线路。

# 1 谐振接地系统单相接地故障电流分析

设第 k 条线路为故障线路,则谐振接地系统发生 单相接地时的零序网络等效电路如图 1 所示。图中,  $u_0$  为故障点零序电源; $R_0$  为零序接地电阻; $L_0$  为消弧 线圈零序电感; $C_1$ 、…、 $C_{k-1}$ 、 $C_k$ ,为非故障线路 的零序分布电容; $C_k$  为故障线路的零序分布电容; $u_c$ 为各馈线对地零序分布电容两端的电压; $i_1$ 、 $i_2$ 、…、 $i_N$ 为各馈线零序电流; $i_L$  为流过消弧线圈的电流。



#### 图 1 零序网络等效电路

Fig.1 Equivalent circuit of zero-sequence network 由图1可知各馈线的零序电流为:

$$i_j = C_j \frac{\mathrm{d}u_C}{\mathrm{d}t} \quad j = 1, 2, \cdots, N; j \neq k \tag{1}$$

$$i_k = i_L + \sum_{j=1, j \neq k}^N i_j$$
 (2)

Project supported by the National Natural Science Foundation of China (51377023) and the Natural Science Foundation of Fujian Province (2012J01203)

由式(1)可知,非故障线路暂态零序电流 *i*;受同 一零序电压 *u*<sub>c</sub> 的作用,变化趋势一致,其区别仅在 于对地电容 *C*<sub>j</sub> 的不同,因此非故障线路间暂态零序 电流波形是相似的,其相似程度与各暂态零序电流 的幅值及极性有关。由式(2)可知,故障线路暂态零 序电流由暂态容性电流和暂态感性电流合成,二者 的比例随故障时刻的不同而变化<sup>[18]</sup>。当接地故障发 生在相电压过峰值时,暂态零序电流主要是高频电容 电流;当接地故障发生在相电压过零点时,暂态零序 电流主要是低频感性电流;故障线路与非故障线路 暂态零序电流相互间波形差异较大。

# 2 波形伸缩变换法选线原理

## 2.1 暂态零序电流波形的伸缩变换

由式(1)可得:

$$\frac{i_j}{d_t} = \frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} \quad j=1,2,\cdots,N; j \neq k \tag{3}$$

由式(3)可知,若把第*j*条线路的故障暂态零序 电流除以其对地等效电容 *C<sub>j</sub>*,则非故障线路间暂态零 序电流波形的相似性将提高。各线路对地等效电容 *C<sub>j</sub>*难以获取,引入伸缩变换系数对暂态零序电流波 形进行变换。以第 *b*条线路作为参考线路,定义第*j* 条线路的伸缩变换倍数 *p<sub>i</sub>*为:

$$p_j = \frac{i_j}{i_k} \quad j = 1, 2, \cdots, N \tag{4}$$

其中, $i_j$ 、 $i_b$  为线路j 和线路b 的故障暂态零序电流。 考虑到暂态零序电流波形具有非线性非平稳特征, 采用稳态时的 $i_j$ 和 $i_b$ 求 $p_j$ 。为减少噪声等因素的影 响,用故障后第q个 1/4 周期采样数据的平均倍数 求 $p_j$ ,暂态过程可能持续 1~2个周期,q 的取值应大 于 8。假设采样频率为 20 kHz,则用故障后零序电流 的第 100(q-1)+1 个采样点到第 100q个采样点的 平均伸缩变换倍数求 $p_j$ ,如式(5)所示。

$$p_{j} = \frac{\sum_{i=100(q-1)+1}^{100q} \left| \frac{\underline{i}_{ji}}{\underline{i}_{bi}} \right|}{100} \quad j=1,2,\cdots,N$$
(5)

下面考虑第 b 条线路即参考线路为故障线路及 非故障线路 2 种情况,分析伸缩变换处理对各线路暂 态零序电流波形的影响。

**a.** 参考线路为非故障线路 $(b \neq k)_{\circ}$ 

由式(3)和式(4)可得:

$$C_j = p_j C_b$$
  $j = 1, 2, \dots, N; j \neq k$  (6)  
结合式(1)、式(4)和式(6)可得非故障线路暂态

零序电流经伸缩变换后的表达式为:

$$i'_{j} = \frac{i_{j}}{p_{j}} = \frac{p_{j}C_{b}\frac{\mathrm{d}u_{c}}{\mathrm{d}t}}{p_{j}} = C_{b}\frac{\mathrm{d}u_{c}}{\mathrm{d}t} \quad j=1,2,\cdots,N; j \neq k \quad (7)$$
  
$$\mathrm{d}cc_{1}(2)\pi c_{1}(4) = 0, \ \mathrm{d}c_{1}(2)\pi c_{2}(4) = 0$$

流经伸缩变换后的表达式为:

$$i'_{k} = \frac{i_{k}}{p_{k}} = \left(i_{L} + \sum_{j=1, j \neq k}^{N} i_{j}\right) / p_{k}$$
(8)

在参考线路为非故障线路的情况下,由式(7)可 知,经伸缩变换处理后,各非故障线路暂态零序电流 具有相同的表达式,伸缩变换处理提高了非故障线 路间暂态零序电流波形的相似性。比较式(7)和式 (8)可知,经伸缩变换处理后,故障线路和非故障线 路暂态零序电流波形间的差异仍较大。

**b.** 参考线路为故障线路(*b*=*k*)。

由式(6)知,各非故障线路等效对地电容可用 某非故障线路(编号 $a,a \neq b$ )等效对地电容 $C_a$ 表示:

$$C_{j} = \lambda_{j} C_{a} \quad j = 1, 2, \cdots, N; j \neq k$$
(9)  
其中,  $\lambda_{j}$  为比例系数。

据式(1)、式(9)可得:

$$i_{j} = C_{j} \frac{\mathrm{d}u_{C}}{\mathrm{d}t} = \lambda_{j} C_{a} \frac{\mathrm{d}u_{C}}{\mathrm{d}t} \quad j=1,2,\cdots,N; j \neq k$$

$$\Leftrightarrow p_{a} = i_{a} / i_{b}, \mathbb{M} \oplus \mathbb{R}(2) \mathbb{R}(10) \overline{\Pi} \oplus :$$

$$p_{j} = \frac{i_{j}}{i_{b}} = \lambda_{j} C_{a} \frac{\mathrm{d}u_{C}}{\mathrm{d}t} / \left(i_{L} + \sum_{j=1, j \neq b}^{N} i_{j}\right) = \lambda_{j} p_{a}$$

$$i=1,2,\cdots,N; i \neq k$$

$$(10)$$

由式(10)、式(11)可知:

$$i'_{j} = \frac{i_{j}}{p_{j}} = \frac{\lambda_{j} C_{a} \frac{\mathrm{d} u_{C}}{\mathrm{d} t}}{\lambda_{j} p_{a}} = \frac{i_{a}}{p_{a}} \quad j = 1, 2, \cdots, N; j \neq k \quad (12)$$

参考线路为故障线路时,故障线路暂态零序电流 波形保持不变。由式(12)可知,经伸缩变换处理后, 各非故障线路的暂态零序电流表达式相同,具有较 强的相似性,伸缩变换处理提高了非故障线路暂态 零序电流波形间的相似性;比较式(2)和式(12)可 知,经伸缩变换处理后,故障线路和非故障线路暂态 零序电流波形的差异仍较大。

## 2.2 基于相平面分析的特征矩阵构造方法

相平面分析是时域波形特征提取的有效方法, 在电弧故障检测、电能质量扰动分类及接地故障 类型分类<sup>[19]</sup>等领域得到应用。相平面是以时间序列 x(t)为横轴,时间序列的导数 $\dot{x}(t)$ 为纵轴所构成的 平面,它以另一种形态表征原始波形。如图 2 所示, 以正弦函数 $y=A_s \sin x(A_s)$ 与幅值, $x \in [0,2\pi]$ )为例, 当 $A_s=1,x$ 从0增大到 $\pi$ 时,其相平面轨迹如曲线 1 所示,相轨迹从点A沿实线到点B,分布在第I、 N象限;当 $A_s=1,x$ 从 $\pi$ 增大到 $2\pi$ 时,其相平面 轨迹如曲线2 所示,相轨迹从点B沿虚线到点A,分 布在第II、III象限;当 $A_s=1.5,x$ 从0增大到 $\pi$ 时,其 相平面轨迹如曲线3 所示,相轨迹从点C沿实线到点 D,分布在第I、N象限。由此可知,对于一个周期内 某一段特定的正弦波,其相平面轨迹是唯一的,且正 弦波的幅值越大,其相轨迹偏离原点的距离也越大。



图 2 正弦波相平面轨迹示意图 Fig.2 Schematic diagram of sine wave trajectory on phase-plane

*i*<sub>j</sub>(*n*)为伸缩变换后第*j*条线路的暂态零序电流 波形的离散时间序列,*n*为采样点号,其对应点的导 数可由式(13)求取。

$$F[i'_{j}(n)] = \frac{i'_{j}(n) - i'_{j}(n-1)}{\Delta t}$$
(13)

其中, $F[i'_{j}(n)]$ 为 $i'_{j}(n)$ 的导数; $\Delta t$ 为采样步长。

由式(13)可知,*F*[*i'<sub>j</sub>*(*n*)]只与当前采样值*i'<sub>j</sub>*(*n*) 和上一次采样值*i'<sub>j</sub>*(*n*-1)有关,而与其他采样值无 关,易受到随机干扰和噪声的影响。将变换后的暂态 零序电流在时域上等分为*N*<sub>1</sub>段,采用最小二乘估计 法拟合<sup>[20]</sup>对各段进行线性化处理,得到*N*<sub>1</sub>个直线 段,那么零序电流波形在某直线段范围内的点的导 数*F*[*i'<sub>i</sub>*(*n*)]均用该直线段的斜率来表示。

因故障暂态零序电流第 1 个半周波(首半波)的 暂态过程明显,包含了极性、幅值等信息,可求取其 时域特征矩阵用于选线。设暂态零序电流首半波的 采样点数为 $K_s$ ,将各线路变换后的暂态零序电流 $i'_i$ 平 均分成 $N_2(N_1=gN_2,g\geq 2,g$ 为整数)段,则每个分段 上采样点的个数为 $K_s/N_2$ 。逐段作相平面变换,并对 每一段相平面图上的点按式(14)进行归一化处理, 使相平面上的数据点都落在区间[-1,1]。

$$\begin{cases} F'[i'_{jm}(n)] = \frac{F[i'_{jm}(n)]}{|F[i'_{jm}(n)]|_{\max}} \\ i''_{jm}(n) = \frac{i'_{jm}(n)}{|i'_{im}(n)|_{\max}} \end{cases}$$
(14)

其中, $i'_{jm}(n)$ 表示 $i'_{j}$ 的第m个分段( $m=1,2,\dots,N_{2}$ ;  $n=1,2,\dots,K_{s}/N_{2}$ ); $|\cdot|_{max}$ 表示各分段中的最大值。

为综合利用故障暂态零序电流的幅值和极性信息进行接地选线,计算每一段伸缩变换后的暂态零序电流波形的相轨迹到相平面确定点(-1,0)的欧氏距离,如式(15)所示。

$$r_{m} = \sum_{n=1}^{K_{n} \setminus N_{2}} \sqrt{[i''_{jm}(n) + 1]^{2} + \{F'[i'_{jm}(n)]\}^{2}}$$
(15)

其中, $r_m$ 为第m段相平面轨迹到确定点(-1,0)的欧氏距离。

由图 2 可知,正弦波在相平面上的轨迹为椭圆, 具有轴对称关系。计算曲线 1 和曲线 2 到原点的欧 氏距离,会得到相同的距离值,无法区分正弦波的正 负半周;但计算曲线 1 和曲线 2 到确定点(-1,0)的 欧氏距离,则可以分辨曲线 1 和曲线 2 的差异。如果 直接计算曲线  $y = \sin x (x \in [0, 2\pi])$ 以及  $y = -\sin x (x \in [0, 2\pi])$ 的相轨迹到确定点 (-1,0)的欧氏距 离,也会得到相同的距离值,不能正确区别 2 条曲线; 将曲线分成多段,分别计算每段相点到确定点(-1,0) 的欧氏距离,则由算得的多个欧氏距离值可分辨两曲 线的差异。考虑到单相接地时,故障线路与非故障线 路暂态零序电流波形间的相轨迹关系与曲线 1 和曲 线 2 间的相轨迹关系相类似,因此采用分段相平面变 换,计算每一段波形的相轨迹到确定点(-1,0)的欧 氏距离,用于判别故障线路和非故障线路的暂态零 序电流波形。

将 r<sub>m</sub>作为暂态零序电流某一时间段波形的局部 特征量,则任意一条线路的暂态零序电流波形的全 局特征量可表示为:

$$\boldsymbol{s}_i = \begin{bmatrix} r_1 & r_2 & \cdots & r_{N_2} \end{bmatrix} \tag{16}$$

则 *N* 条线路的全局特征量构成一个 *N*×*N*<sub>2</sub> 的特征矩阵 *S*, 如式(17)所示。

$$\boldsymbol{S} = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1N_2} \\ s_{21} & s_{22} & \cdots & s_{2N_2} \\ \vdots & \vdots & & \vdots \\ s_{N1} & s_{N2} & \cdots & s_{NN_2} \end{bmatrix}$$
(17)

其中,*s<sub>ii</sub>*表示第*j*条线路的第*i*段相轨迹到确定点(-1,0)的欧氏距离。

为增强可比性,对特征矩阵 S 中的元素按列做归 一化处理,得到:

$$s'_{ji} = s_{ji} / \sum_{j=1}^{N} s_{ji}$$
 (18)

#### 2.3 模糊 K 均值聚类选线

模糊 K 均值聚类是一种基于模糊划分的聚类方法。该算法需要输入待分类的 H 个向量 x<sub>j</sub>(j=1,2, …, H)的 K 组分类的初始模糊隶属度矩阵 U<sup>(1)</sup>:

$$\boldsymbol{U}^{(1)} = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1H} \\ u_{21} & u_{22} & \cdots & u_{2H} \\ \vdots & \vdots & & \vdots \\ u_{K1} & u_{K2} & \cdots & u_{KH} \end{bmatrix}$$
(19)

其中, $u_{ij}$ 表示第j个向量属于第i类的隶属度, $u_{ij} \in [0,1]$ 且 $\sum_{i=1}^{K} u_{ij} = 1(j=1,2,\cdots,H)$ 。设 $v_i$ 为第i类初始聚 类中心向量,则初始聚类中心矩阵为:

$$\boldsymbol{V}^{(1)} = [\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_K]$$
(20)

确定目标函数  $J_M(U,V)$ ,有:

$$J_{M}(\boldsymbol{U},\boldsymbol{V}) = \sum_{j=1}^{H} \sum_{i=1}^{K} (u_{ij})^{M} \| \boldsymbol{x}_{j} - \boldsymbol{v}_{i} \|^{2}$$
(21)

其中,M的值与最终分类的模糊程度有关,为使 $J_M$ 的 最终分类达到局部最优,取M=2,利用拉格朗日乘 数法证明可得:

$$u_{ij}^{(h+1)} = 1 / \sum_{p=1}^{K} \left( \| \boldsymbol{x}_{j} - \boldsymbol{v}_{i}^{(h)} \| / \| \boldsymbol{x}_{j} - \boldsymbol{v}_{p}^{(h)} \| \right)^{2}$$
(22)

$$\mathbf{v}_{i}^{(h)} = \sum_{j=1}^{H} \left[ (u_{ij}^{(h)})^{2} \mathbf{x}_{j} / \sum_{j=1}^{H} (u_{ij}^{(h)})^{2} \right]$$
(23)

其中,h为迭代次数计数器。

模糊 K 均值聚类通过以下步骤来确定聚类中心 矩阵 V 和隶属度矩阵 U:

**a.**确定分类数*K*,令*h*=0,随机给出初始隶属度 矩阵 *U*<sup>(1)</sup>:

b. 据式(23)计算初始分类的聚类中心向量 V<sup>(1)</sup>;

c. 据式(22)计算隶属度矩阵 U<sup>(h+1)</sup>;

**d.** 给定收敛条件Δ(本文取 0.0001),如果 2 次迭 代计算所得的隶属度矩阵差值小于Δ,则迭代结束,否 则返回步骤 **b** 继续迭代,直至达到收敛条件或到达 预定迭代次数为止。

在接地选线工程应用中,利用模糊 K 均值聚类将 各线路故障暂态零序电流波形的特征矩阵 S 分成 2 类,可得隶属度矩阵:

$$U = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1H} \\ u_{21} & u_{22} & \cdots & u_{2H} \end{bmatrix}$$
(24)

其中, u<sub>ij</sub>为第 j 条线路属于第 i(i=1,2)类的隶属度。 由隶属度矩阵 U 可确定隶属于第 1 类的线路和隶 属于第 2 类的线路, 被单独分为一类的线路即为故障 线路。

#### 2.4 接地选线流程

接地选线流程如图 3 所示。以零序电压是否越限作为启动接地选线的依据,若发生单相接地,则对故障暂态零序电流的首半波做伸缩变换;对变换后的波形按时间等分,求各段波形的相平面轨迹,计算每一段波形对应的相点到确定点(-1,0)的欧氏距离,形成特征矩阵 *S* 并对其按列做归一化处理;采用模糊 K 均值聚类将特征矩阵 *S* 分为 2 类,由于非故



图 3 接地选线流程图 Fig.3 Flowchart of faulty line detection

障线路的暂态零序电流波形较为相似而被归为一 类,故障线路暂态零序电流波形则被单独归为另一 类,实现选线。

# 3 选线方法的仿真验证

利用 ATP 搭建一个含 6 条出线的谐振接地系 统模型,见图 4。图中, $R_f$ 为接地电阻;架空线路的正 序 参数 为  $r_{ol} = 0.17 \ \Omega/\text{km}$ , $l_{ol} = 1.21 \ \text{mH/km}$ , $c_{ol} = 0.0097 \ \mu\text{F/km}$ ;架空线路的零序参数为  $r_{o0} = 0.23 \ \Omega/\text{km}$ , $l_{o0} = 5.478 \ \text{mH/km}$ , $c_{o0} = 0.008 \ \mu\text{F/km}$ ;电缆线路的正序参数为  $r_{cl} = 0.27 \ \Omega/\text{km}$ , $l_{cl} = 0.255 \ \text{mH/km}$ ,  $c_{cl} = 0.339 \ \mu\text{F/km}$ ;电缆线路的零序参数为  $r_{c0} = 2.7 \ \Omega/\text{km}$ , $l_{c0} = 1.019 \ \text{mH/km}$ , $c_{c0} = 0.28 \ \mu\text{F/km}$ 。系统总电容电流  $I_c = 3 \ \omega C_{\Sigma} U_N = 36 \ \text{A} > 20 \ \text{A} (\omega \ D = 3 \ \omega L = 3 \ \omega C_{\Sigma} D_N = 36 \ \text{A} > 20 \ \text{A} (\omega \ D = 3 \ \omega L = 3 \ \omega L = 3 \ \omega L = 1/1.05 \ \times U_N / (\omega I_c) = 0.49 \ \text{H}$ ; 消弧线圈的有功损耗大约为感性损耗的 2.5%~5%, 取 3%,则电阻  $R_I = 0.03 \ \omega L = 4.58 \ (\Omega)$ 。



图 4 谐振接地系统仿真模型

Fig.4 Simulation model of resonance-grounding system

以 L<sub>3</sub> 距离母线 5 km 处发生故障合闸角为 60°、 接地电阻为 100 Ω 的单相接地故障为例,说明选线 过程。采样频率为 20 kHz,故障线路和其中 2 条非故 障线路的暂态零序电流首半波波形如图 5(a)所示。 选取 L<sub>4</sub> 作为参考线路,各线路暂态零序电流按变换 系数  $p_k=i_k/i_4$  做伸缩变换,变换后波形如图 5(b)所 示。由图 5 可知,经伸缩变换后,非故障线路暂态零 序电流波形间的相似度得到提高,故障线路与非故 障线路波形间的相似度变化较小。

将伸缩变换所得的故障暂态零序电流首半波分为 N<sub>1</sub>=20 段,做分段线性化,用各直线段的斜率表示 暂态零序电流波形在该直线段范围内的点的导数, 得其相平面轨迹;取 N<sub>2</sub>=10,将相平面轨迹分为 10 段并对各段做归一化处理。求取各线路每段暂态零 序电流的相轨迹点到确定点(-1,0)的欧氏距离,形 成特征矩阵 *S*,对 *S* 按列归一化处理可得:



# 图 5 故障暂态零序电流波形

Fig.5 Fault zero-sequence transient current waveforms 对 S 进行模糊 K 均值聚类,得隶属度矩阵 U:

|              | 0.1480 | 0.1431 | 0.1405   | 0.1331     | 0.1200    | 0.1 |
|--------------|--------|--------|----------|------------|-----------|-----|
|              | 0.1347 | 0.1351 | 0.1372   | 0.1426     | 0.1634    | 0.1 |
| ~            | 0.2681 | 0.2672 | 0.2635   | 0.2488     | 0.2173    | 0.1 |
| <i>S</i> ′ = | 0.1361 | 0.1400 | 0.1364   | 0.1375     | 0.1366    | 0.1 |
|              | 0.1485 | 0.1480 | 0.1577   | 0.1602     | 0.1580    | 0.1 |
|              | 0.1646 | 0.1667 | 0.1647   | 0.1778     | 0.2047    | 0.2 |
| <b>T</b> T/  | 0.0976 | 0.0115 | 0.9760 0 | 0.0301 0.0 | 0219 0.30 | )56 |
| U' = [       | 0.9024 | 0.9885 | 0.0240 0 | .9699 0.9  | 9781 0.69 | 944 |
|              |        |        | _        |            |           |     |

由隶属度矩阵 U' 也可正确判定 L<sub>3</sub> 接地,但通 过比较二者的特征矩阵和隶属度矩阵可以知道, 对暂态零序电流波形进行伸缩变换能够提高选线 裕度。

| 0.1505 | 0.1536 | 0.1735 | 0.1683 | 0.1762 |  |
|--------|--------|--------|--------|--------|--|
| 0.1610 | 0.1614 | 0.1688 | 0.1720 | 0.1742 |  |
| 0.2018 | 0.1764 | 0.1453 | 0.1126 | 0.0869 |  |
| 0.1532 | 0.1587 | 0.1671 | 0.1725 | 0.1741 |  |
| 0.1738 | 0.1840 | 0.1764 | 0.1901 | 0.1861 |  |
| 0.1598 | 0.1659 | 0.1690 | 0.1845 | 0.2024 |  |
| U=     |        |        |        |        |  |
| -      |        |        |        |        |  |

 0.0123
 0.0044
 0.99999
 0.0109
 0.0164
 0.0646

 0.9877
 0.9956
 0.0001
 0.9891
 0.9836
 0.9354

隶属度矩阵 U 的行对应故障状态,第1—6 列分 别对应第1—6条线路,U 中每一列值最大的元素所 在的行即为该线路对应的状态(如下划线所示)。由 隶属度矩阵 U 可知,L。属于一类,其他线路属于另一 类,L。被单独归为一类,由此可判定 L。为接地线路。

若不对各线路故障暂态零序电流波形做伸缩变换,其他步骤不变,则特征矩阵 S'和隶属度矩阵 U' 分别为:

| 0.1232 | 0.1201 | 0.1267 | 0.1296 | 0.1318 |  |
|--------|--------|--------|--------|--------|--|
| 0.1659 | 0.1616 | 0.1696 | 0.1681 | 0.1689 |  |
| 0.1907 | 0.1753 | 0.1546 | 0.1289 | 0.1222 |  |
| 0.1385 | 0.1389 | 0.1450 | 0.1470 | 0.1488 |  |
| 0.1597 | 0.1757 | 0.1651 | 0.1774 | 0.1636 |  |
| 0.2220 | 0.2284 | 0.2390 | 0.2492 | 0.2647 |  |
| 56]    |        |        |        |        |  |

不同线路在不同接地电阻、不同故障点和不同 故障合闸角情况下发生单相接地故障的选线结果见 表 1。表中, *X*<sub>f</sub> 为故障点到母线的距离; *R*<sub>f</sub> 为接地电 阻; *θ* 为故障合闸角。

表1故障选线结果

|                |                     |                      | 1ab.1 1           | Results of faulty line detection                                                                                                                                                                           |                   |
|----------------|---------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 故障线路           | $\theta/(^{\circ})$ | $X_{\rm f}/{\rm km}$ | $R_{ m f}/\Omega$ | 隶属度矩阵 U                                                                                                                                                                                                    | 选线结果              |
|                | 0                   | 4                    | 3000              | $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                 | L <sub>1</sub> 故障 |
| $L_1$          | 45                  | 1                    | 100               | $ \begin{bmatrix} 1 & 0.0040 & 0.0152 & 0.0106 & 0.0139 & 0.0149 \\ 0 & 0.9960 & 0.9848 & 0.9894 & 0.9861 & 0.9851 \end{bmatrix} $                                                                         | L <sub>1</sub> 故障 |
|                | 90                  | 10                   | 2                 | $ \begin{bmatrix} 1 & 0.0001 & 0.0007 & 0.0002 & 0.0002 & 0.0001 \\ 0 & 0.9999 & 0.9993 & 0.9998 & 0.9998 & 0.9999 \end{bmatrix} $                                                                         | L <sub>1</sub> 故障 |
| L <sub>3</sub> | 0                   | 1                    | 100               | $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                 | L3故障              |
|                | 45                  | 3                    | 2                 | $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                 | L3故障              |
|                | 90                  | 8                    | 3 0 0 0           | $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                 | L3故障              |
|                | 0                   | 5                    | 2                 | $ \left[ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                               | L <sub>5</sub> 故障 |
| $L_5$          | 45                  | 5                    | 3 0 0 0           | $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                 | L <sub>5</sub> 故障 |
| _              | 90                  | 1                    | 100               | $ \begin{bmatrix} 0.0234 & 0.0015 & 0.0136 & 0.0204 & \underline{1} & 0.0434 \\ \underline{0.9766} & \underline{0.9985} & \underline{0.9864} & \underline{0.9796} & 0 & \underline{0.9566} \end{bmatrix} $ | L5故障              |

# 4 选线方法的适应性

# 4.1 电弧故障

单相接地初期多表现为间歇性电弧故障,采用 mayr电弧模型进行电弧故障仿真。线路 L<sub>3</sub>在距母线 5 km 处发生电弧接地故障的选线结果见表 2。

|  | 表 2 | 线路 L <sub>3</sub> | 发生电弧故障时的选线结果 |  |
|--|-----|-------------------|--------------|--|
|--|-----|-------------------|--------------|--|

| Га | b.2 | Result | s of | fau | lty | line | detection | for | $\operatorname{arc}$ | fault | of | Γ | ŋ |
|----|-----|--------|------|-----|-----|------|-----------|-----|----------------------|-------|----|---|---|
|----|-----|--------|------|-----|-----|------|-----------|-----|----------------------|-------|----|---|---|

| $\theta/(^{\circ})$ | 隶属度矩阵 U                                                                                                                                                                                                                     | 选线结果  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 0                   | $\left[\begin{array}{cccccccc} 0.0073 & 0.0145 & \underline{1} & 0.0015 & 0.0012 & 0.0052 \\ \underline{0.9927} & \underline{0.9855} & 0 & \underline{0.9985} & \underline{0.9988} & \underline{0.9948} \end{array}\right]$ | L3 故障 |
| 30                  | $\left[\begin{array}{cccccccccc} 0.0088 & 0.0021 & \underline{1} & 0.0067 & 0.0040 & 0.0256 \\ \underline{0.9912} & 0.9979 & 0 & 0.9933 & \underline{0.9960} & \underline{0.9744} \end{array}\right]$                       | L3故障  |
| 60                  | $\left[\begin{array}{cccccccc} 0.0159 & 0.0061 & \underline{1} & 0.0079 & 0.0066 & 0.0176 \\ \underline{0.9841} & \underline{0.9939} & 0 & \underline{0.9921} & \underline{0.9934} & \underline{0.9824} \end{array}\right]$ | L3故障  |
| 90                  | $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                  | L3故障  |

# 4.2 不同时间窗

线路 L4 在距离母线 2 km 处发生故障合闸角为

90°、接地电阻为 3 kΩ 的单相接地故障,选用不同的 暂态零序电流时间窗,选线结果见表 3。

表 3 线路 L<sub>4</sub> 在不同时间窗下故障选线结果

Tab.3 Results of faulty line detection with different time window sizes for  ${\rm L}_4$ 

| 窗口<br>长度  | 隶属度矩阵 U                                                                                                                                                                                                                      | 选线结果  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1/4<br>周期 | $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | L4 故障 |
| 1/2<br>周期 | $\left[\begin{array}{ccccccccc} 0.0294 & 0.0118 & 0.0410 & \underline{1} & 0.0101 & 0.0280 \\ \underline{0.9706} & \underline{0.9882} & \underline{0.9590} & 0 & \underline{0.9899} & \underline{0.9720} \end{array}\right]$ | L4 故障 |
| 2个<br>周期  | $ \left[ \begin{array}{cccccccccc} 0.0239 & 0.0049 & 0.0365 & \underline{1} & 0.0094 & 0.0059 \\ \underline{0.9761} & 0.9951 & \underline{0.9635} & 0 & \underline{0.9906} & \underline{0.9941} \end{array} \right] $        | L4 故障 |

# 4.3 叠加噪声

工程应用中,需考虑外界随机噪声干扰对选线 方法的影响。叠加信噪比为 20 dB 的高斯白噪声干 扰,线路 L<sub>6</sub>在 3 种典型接地故障情况下的选线结果 见表 4。由表 4 可见,该选线算法具有较强的抗干扰 能力。

表 4 线路  $L_6$  在叠加噪声情况下的选线结果

Tab.4 Results of faulty line detection with noises for  $L_6$ 

| $\theta/(^{\circ})$ | $X_{\rm f}/{\rm km}$ | $R_{ m f}/\Omega$ | 隶属度矩阵 U                                                    | 选线结果              |
|---------------------|----------------------|-------------------|------------------------------------------------------------|-------------------|
| 90                  | 4                    | 3000              | $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$ | L <sub>6</sub> 故障 |
| 0                   | 2                    | 100               | $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$ | L <sub>6</sub> 故障 |
| 90                  | 2                    | 2                 | $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$ | L <sub>6</sub> 故障 |

# 4.4 采样不同步

Т

接地故障发生后选线装置对各线路零序电流的 采样可能存在不同步。考虑线路 L<sub>3</sub>、L<sub>4</sub>滞后线路 L<sub>1</sub>、 L<sub>2</sub> 8 个采样点;线路 L<sub>5</sub>、L<sub>6</sub>滞后线路 L<sub>1</sub>、L<sub>2</sub> 14 个采样 点,线路 L<sub>3</sub>末端发生接地电阻为 3 kΩ 的单相接地 故障,其选线结果见表 5。

| 表    | 5 | 采样之    | 不同  | 同步情》   | 兄下自  | 的选线结果     | 果    |
|------|---|--------|-----|--------|------|-----------|------|
| ab.5 | R | esults | of  | faulty | line | detection | with |
|      |   |        | - 1 |        |      | - 1:      |      |

|                     |                                                            | asy                      | incinious .                                                                     | sampning         | ,<br>,                                                            |                   |
|---------------------|------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------|-------------------|
| $\theta/(^{\circ})$ |                                                            |                          | 隶属度矩阵                                                                           | U                |                                                                   | 选线结果              |
| 0                   | $\left[\begin{array}{c} 0.0056\\ 0.9944\end{array}\right]$ | 0.0195<br>0 <u>.9805</u> | <u>1</u> 0.0008<br>0 <u>0.9992</u>                                              | 0.0044<br>0.9956 | 0.0027<br>0.9973                                                  | L <sub>3</sub> 故障 |
| 30                  | $\left[\begin{array}{c} 0.0098\\ 0.9902\end{array}\right]$ | 0.0099<br>0.9901         | $\begin{array}{c} 1 \\ 0.0054 \\ 0 \\ 0.9946 \end{array}$                       | 0.0030<br>0.9970 | 0.0091<br>0.9909                                                  | L <sub>3</sub> 故障 |
| 60                  | $\left[\begin{array}{c} 0.0165\\ 0.9835\end{array}\right]$ | 0.0125<br>0 <u>.9875</u> | $\begin{array}{c} \underline{1} & 0.0074 \\ 0 & \underline{0.9926} \end{array}$ | 0.0085<br>0.9915 | $\begin{array}{c} 0.0296\\ 0.9704 \end{array} \right]$            | L <sub>3</sub> 故障 |
| 90                  | $\left[\begin{array}{c} 0.0121\\ 0.9879\end{array}\right]$ | 0.0149<br>0 <u>.9851</u> | $\begin{array}{c} \underline{1} & 0.0106 \\ 0 & \underline{0.9894} \end{array}$ | 0.0117<br>0.9883 | $\begin{array}{c} 0.0312\\ \underline{0.9688} \end{array} \bigg]$ | L <sub>3</sub> 故障 |

## 5 结论

对伸缩变换后的故障暂态零序电流波形进行分 段相平面分析,进而构造各线路暂态零序电流波形 的特征矩阵,对特征矩阵做模糊 K 均值聚类,选出故障线路。得到的主要结论如下。

a. 波形伸缩变换可提高非故障线路暂态零序电 流波形间的相似度及选线裕度。基于分段相平面分 析所构造的特征矩阵可综合表征暂态零序电流波形 的幅值和极性信息。

**b.** 对特征矩阵做模糊 K 均值聚类,可在不设置 阈值的情况下选出故障线路。但对于母线故障,需 增加检测其进线的故障暂态零序电流。

**c.** 所提选线方法适用于噪声干扰、电弧故障、采 样不同步、不同时间窗等工程应用中可能存在的影 响因素。

#### 参考文献:

- [1] 薛永端,冯祖仁,徐丙垠,等. 基于暂态零序电流比较的小电流接 地选线研究[J]. 电力系统自动化,2003,27(9):48-53.
   XUE Yongduan,FENG Zuren,XU Bingyin,et al. Earth fault protection in non-solidly earthed network based on transient zero sequence current comparison[J]. Automation of Electric Power Systems,2003,27(9):48-53.
- [2] 薛永端,徐丙垠,冯祖仁,等.小电流接地故障暂态方向保护原理研究[J].中国电机工程学报,2003,23(7):51-56.

XUE Yongduan, XU Bingyin, FENG Zuren, et al. The principle of directional earth fault protection using zero sequence transients in non-solid earthed network [J]. Proceedings of the CSEE, 2003,23(7):51-56.

[3] 曾祥君,尹项根,张哲,等. 零序导纳法馈线接地保护的研究[J]. 中国电机工程学报,2001,21(4):5-10.

ZENG Xiangjun, YIN Xianggen, ZHANG Zhe, et al. Study on feeder grounding fault protection based on zero sequence admittance [J]. Proceedings of the CSEE, 2001, 21(4); 5-10.

[4] 贾清泉,窦春霞,张华,等. 配电网单相故障多频带奇异量选线方 法[J]. 电力系统自动化,2007,31(2):74-77. JIA Qingquan, DOU Chunxia, ZHANG Hua, et al. Singularity de-

tection for phase-to-ground fault in non-effective grounded power networks based on multi-frequency bands analysis[J]. Automation of Electric Power Systems, 2007, 31(2):74-77.

- [5] 束洪春,刘娟,王超,等. 谐振接地电网故障暂态能量自适应选线 新方法[J]. 电力系统自动化,2006,30(11):72-76. SHU Hongchun, LIU Juan, WANG Chao, et al. Adaptive method for fault circuit selection in arc suppression coils system by using transient energy[J]. Automation of Electric Power Systems, 2006.30(11).72-76
- [6] 孙雅明, 苗友忠. 谐振接地配电系统馈线单相接地故障的暂态电 流保护新原理[J]. 中国电机工程学报,2004,24(3):63-66. SUN Yaming, MIAO Youzhong. A new principle of transient current grounded relay for feeder in resonant-grounded distribution systems[J]. Proceedings of the CSEE, 2004, 24(3):63-66.
- [7] 贾清泉,刘连光,杨以涵,等,应用小波检测故障突变特性实现配 电网小电流故障选线保护[J]. 中国电机工程学报,2001,21(10): 78-82.

JIA Qingquan,LIU Lianguang,YANG Yihan, et al. Abrupt change detection with wavelet for small current fault relaying[J]. Proceedings of the CSEE, 2001, 21(10):78-82.

[8] 苗友忠,孙雅明,杨华. 中性点不接地配电系统馈线单相接地故 障的暂态电流保护新原理[J]. 中国电机工程学报,2004,24(2): 28-32

MIAO Youzhong, SUN Yaming, YANG Hua. A new principle of transient current grounded relay for feeder in ungrounded distribution systems[J]. Proceedings of the CSEE, 2004, 24(2):28-32.

[9] 王智,汪芳宗. 配电系统接地故障检测的一种新算法[J]. 电力系 统保护与控制,2011,39(20):48-51. WANG Zhi, WANG Fangzong. A new method of earth fault detection in distribution system[J]. Power System Protection and

Control, 2011, 39(20): 48-51. [10] 束洪春,彭仕欣,赵兴兵. 一种配电网线-缆混合线路故障选线 新方法[J]. 电力系统自动化,2008,32(11):61-65.

SHU Hongchun, PENG Shixin, ZHAO Xingbing. A new fault line detection method for hybrid transmission lines of distribution network[J]. Automation of Electric Power Systems, 2008, 32(11): 61-65.

- [11] 张庆超,杨金飞. 基于两相电流交换的小电流接地系统故障选 线新方法[J]. 电力系统自动化,2007,31(8):75-79. ZHANG Qingchao, YANG Jinfei. A novel method of fault line selection for non-direct earth neutral system based on twopahse-current transformation [J]. Automation of Electric Power Systems, 2007, 31(8): 75-79.
- [12] 郭谋发,刘世丹,杨耿杰.利用时频谱相似度识别的配电线路接 地选线方法[J]. 中国电机工程学报,2013,33(19):183-190. GUO Moufa, LIU Shidan, YANG Gengjie. A novel approach to detect fault lines in distribution network using similarity recognition based on time-frequency spectrum [J]. Proceedings

of the CSEE, 2013, 33(19); 183-190.

[13] 梁睿, 王崇林, 刘建华, 等, 基于灰色关联的小电流接地选线研 究[J]. 电力系统保护与控制,2009,37(7):17-25. LIANG Rui, WANG Chonglin, LIU Jianhua, et al. Fault line detection for single-phase-to-earth faults based on improved grey relation analysis[J]. Power System Protection and Control, 2009,

37(7):17-25. [14] 郭谋发,刘世丹,杨耿杰. 采用 Hilbert 谱带通滤波和暂态波形 识别的谐振接地系统故障选线新方法[J]. 电工电能新技术, 2013, 32(3):67-74. GUO Moufa, LIU Shidan, YANG Gengjie. A new approach to detect fault line in resonant earthed system based on Hilbert spectrum band-pass filter and transient waveform recognition [J]. Advanced Technology of Electrical Engineering and Energy, 2013.32(3).67-74.

- [15] 邢亚辉.利用零序电流的相关性进行小电流接地系统故障选线[J]. 电力自动化设备,2008,28(9):64-67. XING Yahui. Faulty line selection with correlativity of zero sequence current in non-solid-earthed network[J]. Electric Power Automation Equipment, 2008, 28(9):64-67.
- [16] 束洪春,徐亮,彭仕欣,等. 谐振接地电网故障选线相关分析法 [J]. 电力系统自动化,2008,28(9):6-9. SHU Hongchun, XU Liang, PENG Shixin, et al. Correlation analysis for faulty feeder detection in resonant earthed system [J]. Automation of Electric Power Systems, 2008, 28(9); 6-9.
- [17] 梁睿,王崇林. 零序暂态电流灰色关联分析的小电流接地选线[J]. 中南大学学报:自然科学版,2010,41(2):585-591. LIANG Rui, WANG Chonglin. Fault line selection for singlephase-to-earth faults based on zero sequence transient current and grey relation analysis[J]. Journal of Central South University: Science and Technology, 2010, 41(2):585-591.
- [18] 束洪春. 配电网络故障选线[M]. 北京:机械工业出版社,2008: 19-26

[19] 贾清泉,陈丽,袁野. 应用相平面和分层聚类的配电网单相接地 故障特征分类[J]. 电力系统自动化,2009,33(8):68-71. JIA Qingquan, CHEN Li, YUAN Ye. Classification of single phase to ground fault based on phase-plane and hierarchical clustering for neutral high impedance earthed distribution networks [J]. Automation of Electric Power Systems, 2009, 33(8): 68-71.

[20] 蒋嵘,李德毅. 基于形态表示的时间序列相似性搜索[J]. 计算 机研究与发展,2000,37(5):601-608.

JIANG Rong, LI Deyi. Similarity search based on shape representation in time-series data sets[J]. Journal of Computer Research & Development, 2000, 37(5); 601-608.

#### 作者简介:



郭谋发(1973-),男,福建福清人,副教授, 研究方向为电力系统自动化(E-mail:gmf@ fzu.edu.cn):

郑新桃(1989-),男,福建三明人,硕士 研究生,研究方向为配电网自动化:

杨耿杰(1966-),男,福建武夷山人,教 授,研究方向为电力系统分析:

郭谋发

高 伟(1983-),男,福建平潭人,讲师, 硕士,研究方向为配电网自动化;

缪希仁(1965-),男,福建宁德人,教授,博士,研究方向为 电气设备在线监测与故障诊断。

# Faulty line detection based on transient waveform stretching transformation for resonance-grounding system

GUO Moufa, ZHENG Xintao, YANG Gengjie, GAO Wei, MIAO Xiren

(College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350116, China)

**Abstract**: When single-phase grounding fault occurs in resonance-grounding system, the similarity of zerosequence transient current waveform between two healthy feeders is higher than that between fault and healthy feeders. The former is related mainly to the line-earth capacitance. The ratio between two equivalent line-earth capacitances is adopted in the stretching transformation of zero-sequence transient current waveform to improve the similarity between waveforms and the margin of faulty line detection. The Euclidean distance between the phase-plane trajectory of the zero-sequence transient current waveform after stretching transformation and a definite point is calculated based on the sectional phase-plane analysis. The Euclidean distances of sectional phase-planes are applied to form a characteristic matrix to represent the amplitude and polarity information of the zero-sequence transient current waveform, to which the fuzzy Kmeans clustering is then applied for detecting the faulty feeder. The proposed method is verified by simulations in different conditions, such as noise interference, arc-grounding fault, asynchronous sampling, varied time window size, etc. The simulative results demonstrate its higher adaptability, reliability and accuracy.

**Key words**: resonance-grounding system; resonance; electric grounding; faulty line detection; zero-sequence transient current; stretching transformation; phase-plane analysis; fuzzy K-means clustering

(= xx, 20 x continued from page 20)

# Empirical Gramian balanced reduction of nonlinear power system model

ZHAO Hongshan, XUE Ning, SHI Ning

(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,

North China Electric Power University, Baoding 071003, China)

Abstract: The empirical Gramian balanced reduction method is proposed to reduce the dimensionality and complexity of nonlinear multi-machine power system model, which projects the high-dimensional nonlinear dynamic model to a low-dimensional subspace to obtain a reduced model while retains the original dynamic behaviors of its inputs and outputs. Its implementation is as followings:build the nonlinear dynamic model of power system; obtain the empirical controllable and observable Gramian matrices based on the simulative samples and experiential samples; calculate the transformation matrix T based on the obtained Gramian matrices; decomposite the singular values of obtained Gramian matrices of the balanced model of original system and its empirical controllable and observable Gramian matrices to get the singular values of obtained Gramian matrices of the balanced model to get the Hankel singular values; determine the subspace dimension according to the obtained Hankel singular values to get the reduced model. Simulation is carried out for an actual 20-generator nonlinear power system as an example and the simulative results show its dimension is reduced from 120 to 50 while its stability and the dynamic behaviors of its inputs and outputs are kept, verifying the effectiveness of the empirical Gramian balanced reduction method applied in the reduction of nonlinear power system model.

Key words: electric power systems; nonlinear systems; models; empirical Gramian balanced reduction; model reduction; singular value decomposition; computer simulation