计及模型误差的分布式光伏配电网优化调控方法

窦晓波1,蔡 超2,段向梅1,韩 俊2,刘之涵1,陈 曦2

(1. 东南大学 电气工程学院,江苏 南京 210096;2. 国网江苏省电力有限公司经济技术研究院,江苏 南京 210009)

摘要:当前配电网存在信息采集不全、在线获取电网精确模型困难的问题,导致对分布式光伏的调控存在误差,难以满足配电网安全运行的要求,因此提出了一种计及模型误差的分布式光伏配电网调控方法。基于近 似灵敏度建立了光伏调控量粗略计算模型;采用极限学习机(ELM)方法建立人工智能辅助决策模型,作为光 伏调控量粗略计算模型的修正;进一步地,基于上述2个模型,设计了计及模型误差的分布式光伏优化调控 策略;最后进行仿真分析,结果表明提出的调控方法弥补了仅依赖电网模型进行优化带来的误差,提高了优 化调控的精度。

0 引言

为了应对能源危机和环境污染问题,分布式光 伏(PV)作为一种清洁、可再生的能源大量接入配电 网。但由于光伏具有较强的随机性、间歇性和波动 性,随着其渗透率的不断提高,配电网电压波动愈发 明显,电能质量不断恶化,给配电网的安全、经济和 稳定运行带来了诸多挑战^[1]。

为了解决上述问题,大量文献挖掘分布式光伏 的有功无功调节能力,研究了配电网中分布式光伏 的调控方法,其控制方案整体上可分为本地控制、分 布式控制和集中控制这3种。本地控制无需通信, 仅利用本地测量数据,对光伏波动快速做出响应。 文献[2-3]为了解决响应过程中的超调问题,分别提 出了不同的光伏有功和无功本地控制策略;文献[4] 提出了本地控制参考值调制方法。然而本地控制仅 利用本地信息调节并网点电压,各光伏间没有协调, 难以达到全局最优。分布式控制中各控制器可获取 相邻节点信息,并利用分布式算法实现协调优化。 文献[5]对优化问题凸松弛,并提出了一种分布式算 法求解分布式电源出力;文献[6]基于反馈策略实现 配电网的分布式优化控制。然而分布式优化算法及 其协调流程一般较复杂,同时存在算法收敛性的问 题,目前在实际工程中还较难实施。集中控制是通 过集中控制器采集电网信息,并统一计算和下发分 布式光伏的优化功率调节指令。文献[7]以运行成 本和网损最小为目标,建立配电网多目标优化调控

收稿日期:2018-12-21;修回日期:2019-09-04

基金项目:国家自然科学基金资助项目(51777031);国网江 苏省电力有限公司科技项目(J2018058)

Project supported by the National Natural Science Foundation of China(51777031) and the Science and Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.(J2018058) 模型,以缩短计算时间和简化模型复杂度;文献[8-9]提出了基于模型预测控制的电压控制策略。综 上,相比于本地控制,集中控制能够协调各光伏出 力,易于实现全局优化;相比于分布式控制,集中控 制优化流程相对简单,易于工程实现。因此在目前 技术条件下,集中控制是分布式光伏配电网调控的 主流方式。

近年来,人工智能理论在电力系统中得到了飞 速发展和应用,从早期的专家系统到中期的神经网 络和进化计算,再到相关的向量机,涉及的应用领域 包括暂态稳定评估[10]、配电网网损计算[11]、故障定 位[12]、负荷与发电预测[13-14]等。具体到分布式光伏 发电领域,文献[15]提出了一种基于改进深度受限 玻尔兹曼机算法的光伏发电短期功率概率预测模 型;文献[16]总结了基于人工神经网络实现光伏最 大功率点跟踪的技术;文献[17]提出了基于模糊神 经网络的光伏逆变器并网控制方法,保证了电网故 障时有功功率平衡。在配电网优化调控领域,人工 智能的应用主要分为以下2个方面。一方面是利用 各种智能算法求解优化调控模型,有效增强全局寻 优能力,如文献[18]提出了基于自学习迁移粒子群 的无功优化算法;文献[19]基于Pareto 熵的多目标 粒子群优化算法提出了一种应用于多目标无功优化 的改进粒子群优化算法。另一方面,利用人工智能 强大的自学能力、推广能力以及非线性处理能力挖 掘数据的隐含规律,从而拟合输入值和输出值之间 的关联关系,如文献[20]以光伏有功出力预测值和 负荷预测值等为输入,采用粒子群优化算法计算得 到的光伏无功优化值为输出建立神经网络,实现光 伏的无功在线优化。需要说明的是,上述优化调控 方法都需要建立精确的物理模型。但相比于输电 网,配电网中分布式电源和负荷节点数目众多,限于 投资,缺乏量测设备,可实时采集到的电网运行数据

通常不够完备。因此基于实时量测数据建立的电网 实时模型不精确,存在较大误差,影响了配电网优化 调控的效果。

为此,本文提出了一种计及模型误差的分布式 光伏配电网调控方法,即利用人工智能来协同挖掘 光伏出力与系统电压的关系,并作为配电网优化调 控的辅助决策。具体研究内容包括:计及光伏的调 控能力,基于近似灵敏度建立了配电网分布式光伏 调控量的粗略计算模型;以光伏出力和总负荷为输 入、母线电压为输出,以电网运行数据作为学习样 本,建立了基于极限学习机(ELM)的人工智能辅助 决策模型,规避了故障数据数据量小、累积慢的弊 端;在此基础上,设计了含辅助决策的分布式光伏配 电网调控策略,实现了光伏调控量的反馈校正,弥补 了仅依赖电网模型进行优化带来的误差,提升了分 布式光伏优化调控的效果;通过算例及仿真分析验 证了所提方法的正确性和有效性。

1 人工智能辅助决策的分布式光伏配电网 调控策略

本文所提的分布式光伏配电网调控系统框架如 图1所示。首先,通过集中控制器采集各光伏和配 电网其他节点的状态信息;然后,由部署在集中控制 器中的分布式光伏调控策略优化各光伏的有功和无 功出力指令;最后,统一下发至各光伏,各光伏跟踪 指令值运行,从而实现配电网的安全经济运行。

图 1 分布式光伏集中调控框架 Fig.1 Centralized optimal control framework of distributed PV

分布式光伏调控策略如图2所示,其主要由以 下3个模块构成:基于近似灵敏度的光伏调控量粗 略计算模块、基于极限学习机的人工智能辅助决策 模块以及光伏调控量的反馈修正模块。

基于近似灵敏度的光伏调控量粗略计算模块的 主要功能是:首先,综合考虑分布式光伏及其并网逆 变器控制的特点,得到分布式光伏调控能力模型;然 后,根据网络拓扑和稳态系统参数,计算得到光伏的 近似电压灵敏度值;最后,考虑配电网调控的优化目 标和约束条件,因灵敏度值不精确导致该模块计算 的光伏调控量存在一定误差,故建立光伏调控量粗 略计算模型。

图2 人工智能辅助决策的分布式光伏配电网调控策略

Fig.2 Optimal distributed PV control strategy assisted by artificial intelligence in distributed network

基于极限学习机的人工智能辅助决策模块的主要功能是:首先,从积累的配电网网络拓扑和稳态系统参数中选取光伏出力和总负荷为输入,系统母线或薄弱节点的电压为输出,利用极限学习机构建学习模型;进而探究输入与输出之间的关联关系,建立人工智能辅助决策模型库。

光伏调控量反馈修正模块的功能是:利用人工 智能辅助决策模块中建立的输入输出关系修正光伏 调控量粗略计算模块产生的调控指令,通过相互迭 代实现光伏调控指令的再优化,以提高调控指令的 精度。

2 基于近似灵敏度的光伏调控量粗略计算 模型

2.1 分布式光伏调控能力模型

(1)有功调控能力。

光伏的有功出力主要受天气影响,正常情况下 各光伏工作于最大功率点,因此对光伏有功进行调 节时,只能减少其出力值,调节范围可表示为:

$$P_{\rm PV} \in [0, P_{\rm PV, MPP}] \tag{1}$$

其中, P_{PV}为光伏有功出力; P_{PV,MPP}为光伏有功最大出力。

利用由于调节导致的有功功率的减少量乘以光 伏上网价格,得到第三方利益损失,以此来衡量调节 光伏有功功率的成本,计算公式如下:

$$C = F_{\rm PV} \Delta P_{\rm PV} \tag{2}$$

其中,C为有功调节成本; F_{PV} 为光伏上网价格; ΔP_{PV} 为光伏有功功率削减量。

(2)无功调控能力。

(

光伏既能发出感性无功功率也能发出容性无功 功率,但其受到有功出力、容量和最大允许功率角的 限制^[9]。光伏最大无功出力可表示为:

$$Q_{\rm PV,max} = \min(P_{\rm PV} \tan \phi_{\rm max}, \sqrt{S^2 - P_{\rm PV}^2})$$
(3)

(4)

其中,S为光伏容量; \$\phi_max 为最大允许功率因数角。 由此得到光伏无功出力调节范围为

 $Q_{\rm PV} \in [-Q_{\rm PV,max}, Q_{\rm PV,max}]$ 当光伏有功出力变化时,光伏无功调节范围也 随之变化;而当无功变化时不影响有功出力,故一般 不计及无功功率的调节成本。

通过建立有功成本模型,在优化调控过程中可 实现优先调节光伏的无功出力。

2.2 近似电压灵敏度计算方法

通过对配电网稳定运行点局部线性化,可得到 节点电压变化量与节点注入有功功率和无功功率变 化量之间的关系^[6],即电压灵敏度。

利用牛顿-拉夫逊法进行潮流计算,可得极坐标 形式下的修正方程,即:

$$\begin{bmatrix} H & N \\ K & L \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta V/V \end{bmatrix} = \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix}$$
(5)

其中, $\begin{bmatrix} H & N \\ K & L \end{bmatrix}$ 为雅可比矩阵; $\Delta \theta$ 和 ΔV 分别为节点 电压的相角和幅值修正量;V为电压幅值的对角阵; ΔP 和 ΔO 分别为节点注入有功功率和无功功率的扰 动量。

正常运行情况下,电压相角θü较小,电压幅值 的标幺值在1.0 p.u. 附近,由此对雅可比矩阵进行简 化,并进行高斯消去,得到电压灵敏度如下:

$$\Delta V = \left[(B+Q)(G-P)^{-1}(B-Q) + (G+P) \right]^{-1} \Delta P - \left[(G-P)(B+Q)^{-1}(G+P) + (B-Q) \right]^{-1} \Delta Q \quad (6)$$

其中,B和G分别为节点导纳阵的实部和虚部;P和 O分别为节点注入的有功功率和无功功率的对角 阵,其对角元素分别为 P_i/V_i^2 和 Q_i/V_i^2 , P_i 与 Q_i 分别为 节点i的有功和无功注入。

如上文所述,配电网中节点注入的有功和无功 实时值难以获取,本文利用平均负荷建立离线配电 网模型,计算得到电压灵敏度值。由于灵敏度计算 过程中采取了近似处理且部分实时值以平均值代 替,所以得到的电压灵敏度值存在一定误差。

2.3 光伏调控量粗略计算模型

基于光伏的近似灵敏度值,以母线电压偏差和 调控成本最小为优化目标,以光伏有功和无功出力 为优化变量,建立配电网分布式光伏优化调控模型, 得到存在一定误差的分布式光伏粗略调控量。

(1)优化目标。

优化目标函数可表示为:

$$\min\left(\alpha \left| V - V_{\rm ref} \right| + \beta C\right) \tag{7}$$

其中,V为调节后的电压值; V_{ref} 为电压参考值; α 和 β 为权重系数。

不考虑各光伏之间对电压的耦合作用,电压变 化可采用线性叠加方式,电压与光伏出力变化量之 间的关系如下:

$$V = V^{(0)} + \Delta V = V^{(0)} + \sum_{j=1}^{m} (S_{Pj} \Delta P_{PVj} + S_{Qj} \Delta Q_{PVj})$$
(8)

其中, $V^{(0)}$ 为电压初始值; ΔV 为电压变化量; $S_{\mu\nu}S_{\alpha\nu}$ 分 别为第i台光伏有功、无功出力对电压的近似灵敏度 值; $\Delta P_{\rm PV}, \Delta Q_{\rm PV}$ 分别为第i台光伏有功、无功出力调 控量:m为馈线上光伏的个数。

(2)约束条件。

为了使优化结果满足电网运行要求,在优化模 型中增加约束条件。

a. 功率平衡约束。

$$\begin{cases} P_{i} = \operatorname{Re}\left(\boldsymbol{V}_{i}\sum_{i=1}^{n}\hat{Y}_{ij}\hat{V}_{i}\right) \\ Q_{i} = \operatorname{Im}\left(\boldsymbol{V}_{i}\sum_{i=1}^{n}\hat{Y}_{ij}\hat{V}_{i}\right) \end{cases}$$
(9)

其中, V_i 为节点i电压相量; Y_i 为系统导纳矩阵对应 元素;n为节点数目;"^"表示共轭。

b.节点电压约束。

$$V_{1i,\min} \leqslant V_{1i} \leqslant V_{1i,\max} \tag{10}$$

其中,V₁为正常运行情况下节点*i*处电压幅值;V_{1imin}、 V_{li.max}分别为配电网正常运行情况下节点i电压下限 和上限。

$$V_{2i,\min} \leqslant V_{2i} \leqslant V_{2i,\max} \tag{11}$$

其中, V_{2i} 为紧急工况下节点*i*处电压幅值; V_{2i} min V_{2i} max 分别为紧急工况下节点;电压下限和上限。

c.光伏出力约束。

$$\begin{cases} 0 \leq P_{\text{PV}j} \leq P_{\text{PV}j,\text{MPP}} \\ -Q_{\text{PV}j,\text{max}} \leq Q_{\text{PV}j} \leq Q_{\text{PV}j,\text{max}} \end{cases}$$
(12)

3 基于极限学习机的人工智能辅助决策 榵型

3.1 极限学习机设计

极限学习机是一种新的单隐含层前向神经网 络,其结构如图3所示,由输入层、隐含层和输出层 这3层构成。极限学习机随机初始化输入权重和隐 含层节点偏置,以最小化训练误差为目标,通过算法 确定隐含层输出权重[21]。

图3 极限学习机网络模型结构 Fig.3 Structure of ELM network model

(1)输入层与输出层。

输入层接受外部的信号与数据,输出层实现系 统处理结果的输出。现有N组样本(X_j , U_j),其中 X_j 为由m个光伏的有功、无功功率以及配电网的总负 荷组成的样本,即 $X_j = [P_{PV,j1}, Q_{PV,j1}, P_{PV,j2}, Q_{PV,j2}, \cdots, P_{PV,jm}, Q_{PV,jm}, P_{L,j}, Q_{L,j}]^T \in \mathbb{R}^{2m+2}, U_j$ 为母线电压样本,且 $j=1,2,\cdots,N$ 。将 X_j 作为极限学习机的输入层, U_j 作 为极限学习机的输出层。

(2)隐含层。

隐含层处于输入层与输出层之间,由大量具有 计算功能的节点并行组成,通过这些节点建立输入 层与输出层的非线性关系。

含有*L*个隐含节点、激活函数为*g*(*x*)的极限学 习机的数学模型可以表示为:

$$\sum_{i=1}^{L} \beta_i g\left(\boldsymbol{W}_i \cdot \boldsymbol{X}_j + \boldsymbol{b}_i\right) = O_j \quad j = 1, 2, \cdots, N$$
(13)

其中, $W_i = [w_{i1}, w_{i2}, \dots, w_{i(2m+2)}]^T$ 为第*i*个隐含层节点 与输入节点之间的权重向量; β_i 为第*i*个隐含层节点 与输出节点之间的权重; b_i 为第*i*个隐含层节点的偏 置; O_i 为极限学习机输出结果;"·"表示矩阵的内积。

极限学习机学习的目标是在最小的误差下逼近 N个样本,即存在 β_i 、 W_i 、 b_i 使得:

$$\sum_{i=1}^{L} \beta_{i} g \left(\mathbf{W}_{i} \cdot \mathbf{X}_{j} + b_{i} \right) = U_{j} \quad j = 1, 2, \cdots, N \quad (14)$$

式(14)利用矩阵可表示为:

$$H\beta = U \tag{15}$$

其中,**H**为隐含层输出矩阵;**β**为输出权重矩阵;U为 期望输出矩阵。

$$H(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{L}, b_{1}, b_{2}, \cdots, b_{L}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{N}) = \begin{bmatrix} g(\boldsymbol{w}_{1}\cdot\boldsymbol{x}_{1}+b_{1}) & g(\boldsymbol{w}_{2}\cdot\boldsymbol{x}_{1}+b_{2}) & \cdots & g(\boldsymbol{w}_{L}\cdot\boldsymbol{x}_{1}+b_{L}) \\ g(\boldsymbol{w}_{1}\cdot\boldsymbol{x}_{2}+b_{1}) & g(\boldsymbol{w}_{2}\cdot\boldsymbol{x}_{2}+b_{2}) & \cdots & g(\boldsymbol{w}_{L}\cdot\boldsymbol{x}_{2}+b_{L}) \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$
(16)

$$\boldsymbol{\beta} = \begin{bmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \vdots \\ \boldsymbol{\beta}_L \end{bmatrix}, \quad \boldsymbol{U} = \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \\ \vdots \\ \boldsymbol{u}_N \end{bmatrix}$$
(17)

极限学习机算法中,一旦输入权重和隐含层的 偏置被随机确定,输出矩阵就被唯一确定,输出权值 可以利用最小二乘法来获得,解为:

$$\boldsymbol{\beta} = \boldsymbol{H}^{+}\boldsymbol{U} \tag{18}$$

其中, H^{+} 为隐含层输出矩阵H的 Moore-Penrose广 义逆。

3.2 学习模型建立流程

基于上述分析,利用极限学习机模型建立人工 智能辅助决策模型的具体流程如下:收集并积累各 光伏有功出力P_{PV}、无功出力Q_{PV}、总负荷有功P_L、无 功 Q_{L} 和母线电压U;对数据进行归一化处理;设置极 限学习机隐含层数目;经多次训练得到隐含层节点 个数不同的网络模型,每次训练随机生成权重向量 W_{i} 和偏置 b_{i} ,计算隐含层节点输出H和权重向量 β ; 使用测试样本检测各个模型的均方根误差,记录不 同模型中均方根误差,采用满足要求且均方根误差 最小为人工智能辅助决策模型。

当配电网运行时,记录所对应的网络拓扑和参数,通过系统一段时间的运行和数据积累,利用上述 人工智能辅助决策模型建立方法,针对配电网1-3 月、4-6月、7-9月和10-12月的运行数据建立4 类辅助决策模型;针对晴天、阴天、雨雪天气建立3 类辅助决策模型;针对配电网不同拓扑建立多类辅 助决策模型,形成包含不同运行参数和网络拓扑的 辅助决策模型库。

4 含辅助决策的配电网分布式光伏调控 流程

当配电网母线电压波动时,首先,利用粗略计算 模型计算光伏出力粗略调控量;然后,为提高实时 性,根据当前系统的网络拓扑和运行参数,直接从决 策模型库中选取最匹配的辅助决策模型,基于该模 型建立母线电压与分布式光伏出力的关联关系,将 粗略调控量作为初始值,对光伏调控量进行快速修 正;最后,优化后的调控指令由集中控制器同步下发 给各台分布式光伏,以实现配电网电压的全局优化。

综上,人工智能辅助决策的配电网分布式光伏 调控的总流程如图4所示。

需要说明的是,因为存在通信环节,数据采集和 控制指令延迟不可避免,特别是目前配电网自动化 尚未实现光纤全覆盖。当发生电压严重越限等故障 类事件时还需首先依靠快速无功设备,如电容器、电 抗器、静态无功发生器、光伏逆变器等的本地控制以 保障电压安全,然后由集中调控实现电压的全局二 次优化。

5 算例分析

5.1 系统参数

本文基于 IEEE 33 节点的拓扑结构,设计如图5 所示含多台分布式光伏的有源配电网系统。图中,2 号节点为平衡节点,分别在2、24、7、28号节点处接 入可控的分布式光伏 PV₁—PV₄,接入容量分别为 1000、500、500、300 kV·A,功率因数限制为0.95;分 别在5、12、14、15、20、22、31号节点接入不可控的分 布式光伏。

本文算例以配电网正常运行情况为背景,配电网正常运行情况下母线电压的上、下限分别设为 Umax = 1.045 p.u.、Umin = 0.955 p.u.,参考电压 Umer 设为

图4 配电网分布式光伏调控流程图

Fig.4 Flowchart of optimal distributed PV control in distribution network

Fig.5 Structure of modified IEEE 33-bus simulation system

1.03 p.u.。详细的线路参数见附录A。

5.2 近似灵敏度计算与极限学习机学习结果分析

根据2.2节中近似电压灵敏度计算方法,可以得 到系统中可控分布式光伏 PV_1 — PV_4 的有功对母线 电压的近似灵敏度值分别为7.09×10⁻⁵、5.29×10⁻⁵、 5.15×10⁻⁵、5.32×10⁻⁵ p.u./kW,无功对母线电压的近 似灵敏度值分别为7.08×10⁻⁵、7.21×10⁻⁵、7.13×10⁻⁵、 7.26×10⁻⁵ p.u./kvar。可见, PV_1 的有功-电压灵敏度 较其他3个有功-电压灵敏度值偏大。

不同天气状况下对不同负荷日分别进行仿真,

得到并选取800组样本,每个样本数据包含10个输入值(4台可控光伏的有功、无功出力和总负荷的有功、无功)、1个输出值(母线电压)。对800组样本全部进行标注,抽取其中的720组样本作为训练数据,建立含多个不同隐含层节点数目的极限学习机网络模型,剩下的80组数据作为测试样本进行测试,通过计算均方根误差(RMSE)检验和比较各个模型的准确性。

令隐含层节点数目L从5到100递增,分别计算 不同L值下测试样本的均方根误差,选取部分计算 结果如表1所示。

表1 不同隐含层节点时均方根误差

Table 1 RMSE of different numbers of hidden layer nodes

隐含层节点数	均方根误差	隐含层节点数	均方根误差	
25	0.03597	28	0.04199	
26	0.02301	29	0.03260	
27	0.04142	30	0.03362	

结果表明当隐含层节点数目L=26时,均方根误 差最小,为0.02301。因此,以26为隐含层节点数 目,建立适用于图5所示的拓扑和参数的极限学习 机网络,作为人工辅助决策模型,该极限学习机网络 的权重系数和偏置见附录B。

5.3 调控结果分析

为验证所提方法的有效性,以光伏出力波动和 负荷变化模拟配电网运行状态的变化,使得母线电 压在不同程度上越限,比较3种不同控制策略(S₁— S₃)的调控效果。控制策略S₁为本文提出的含辅助 决策的调控方法,控制策略S₂为不含辅助决策的调 控方法,控制策略S₃为无调控方法。

5.3.1 算例1

该场景模拟天气转晴,各光伏有功出力增大,母 线电压抬升但是没有越上限,3种不同控制策略下 的优化过程如图6所示。图中电压为标幺值,后同。

图 6(a)为母线电压变化曲线图。t₁时刻,光伏 出力增加,母线电压随之快速上升,至t₂时刻,母线 电压上升到 1.045 p.u.,触发配电网优化调控。在该 场景中,由于可控光伏的无功容量充裕,策略 S₁和 S₂ 都只优化了光伏的无功出力。策略 S₂直接利用近似 灵敏度计算光伏无功指令值,而策略 S₁利用粗略计 算模型与辅助决策模型相互迭代 3 次得到无功指令 值。具体光伏无功指令值如下:策略 S₁下 PV₁—PV₄ 无功出力指令值分别为 263.7、98.6、66.4、42.9 kvar, 策略 S₂下 PV₁—PV₄无功出力指令值分别为 235.2、 80.1、52.9、30.5 kvar。需要说明的是,策略 S₁与 S₂的 产生指令时间在同一数量级。t₃时刻光伏调整其无功 出力值,发出感性无功,因此母线电压开始下降,并于

46

 t_4 时刻稳定, S_1 和 S_2 这2种策略下母线电压分别调整 至1.029 p.u.和1.034 p.u.。

选取图 6(a)中的 t_4 时刻,配电网系统中所有节 点在 S_1 — S_3 这 3 种策略下电压分布如图 6(b)所示。 可以看出,当电压波动较小时,只利用光伏的无功可 以抑制电压的波动,其中策略 S_2 由于灵敏度值有误 差,优化结果有偏差,但是策略 S_1 对无功调节量进行 了修正,与策略 S_2 相比,调节结果更接近于参考值。 5.3.2 算例 2

该场景模拟用户用电减少、负荷削减、电压波动 较大且越上限,单一地调节光伏的无功无法满足优 化要求,因此利用光伏的有功和无功协调进行电压 优化。

策略S₁和S₂中,在无功调节能力不足的情况下, 由于 PV₁处的电压灵敏度值最大,为了降低调控成 本,优先削减 PV₁的有功出力。具体指令值如表2所 示。策略S₁共迭代4次,PV₁的有功、无功指令值分 别为462.6 kW、152.7 kvar,策略S₂没有迭代过程, PV₁有功、无功指令值分别为633.4 kW、209.0 kvar。

表 2 算例 2 中不同策略下光伏有功、无功指令值 Table 2 Active and reactive power command value of

PVs under different strategies in Case 2

					•					
调控	空 有功指令值/kW				无功指令值/kvar					
策略	PV_1	PV_2	PV_3	PV_4	PV_1	PV_2	PV_3	PV_4		
S_1	462.6	264.0	290.0	182.0	152.7	87.1	95.7	60.1		
S_2	633.4	264.0	290.0	182.0	209.0	87.1	95.7	60.1		

母线电压在3种调控方法下的变化如图7(a)所示。与算例1中母线电压变化过程相类似,t₁时刻, 母线电压由于负荷削减开始上升;t₂时刻,母线电压 上升到最高值1.068 p.u.,越电压上限1.05 p.u.,触发 配电网分布式光伏调控策略;t₃时刻,按照表2所计 算得到的优化指令值,分别对光伏有功出力进行削 减、对光伏无功出力进行调整,因此母线电压开始下降,并于t₄时刻电压趋于稳定。从结果可以看出,S₁和S₂这2种策略下,母线电压分别调整至1.031 p.u. 和1.045 p.u.。

Fig.7 Voltage curves under different control strategies in Case 2

类似地,选取图7(a)所示的电压稳定时刻,即 t_4 时刻,得到3种策略下所有节点的电压分布如图7(b)所示。结果表明,利用光伏的有功和无功协调配合,整个配电网系统实现了安全运行,且相较于策略S₂,因策略S₁修正了灵敏度不精确带来的误差,调节精度有所提高。

6 结论

本文针对调控过程中由于灵敏度不准确而导致 的误差问题,提出了一种计及模型误差的分布式光 伏配电网优化调控方法,其充分利用光伏的有功无 功调节能力,有效应对配电网中电压波动的问题,并 得到以下结论。

(1)将电网正常运行数据作为学习样本,具有数据规模大、积累快的优点;避免了将电网故障数据作为样本、样本积累慢、训练过程长的缺点,有利于人工智能在配电网优化运行中发挥作用。

(2)采用极限学习机算法随机产生输入权重和 偏置,在训练过程中无需调整;优化隐含层节点个 数,减少了学习误差。

(3)基于辅助决策模型,对采用常规优化方法得 到的调度指令进行修正,提高了分布式光伏功率调 度精度,电压调节效果更优。

需要说明的是,当配电网拓扑或参数发生变化 后,需建立与之对应的辅助决策模型;而当配电网规 模较大时,可能的拓扑组合和参数较多,一方面会导 致决策模型数目变多,另一方面会导致匹配难度变 大。如何在保证决策精度的前提下解决这一工程实 际问题,将是笔者后续的研究方向。 附录见本刊网络版(http://www.epae.cn)。

参考文献:

[1]赵波,张雪松,洪博文.大量分布式光伏电源接入智能配电网 后的能量渗透率研究[J].电力自动化设备,2012,32(8): 95-100.

ZHAO Bo, ZHANG Xuesong, HONG Bowen. Energy penetration of large-scale distributed photovoltaic sources integrated into smart distribution network [J]. Electric Power Automation Equipment, 2012, 32(8):95-100.

- [2]魏昊焜,刘健,高慧.分布式电源的本地电压控制策略[J].电力自动化设备,2016,36(9):40-45.
 WEI Haokun,LIU Jian,GAO Hui. Local voltage control of distributed generations[J]. Electric Power Automation Equipment, 2016,36(9):40-45.
- [3] GHOSH S,RAHMAN S,PIPATTANASOMPORN M. Distribution voltage regulation through active power curtailment with PV inverters and solar generation forecasts[J]. IEEE Transactions on Sustainable Energy, 2016, 8(1):13-22.
- [4] MEHRIZI-SANI A, IRAVANI R. Online set point modulation to enhance microgrid dynamic response: theoretical foundation
 [J]. IEEE Transactions on Power Systems, 2012, 27(4):2167-2174.
- [5] ZHANG B, LAM A Y S, DOMÍNGUEZ-GARCÍA A D, et al. An optimal and distributed method for voltage regulation in power distribution systems[J]. IEEE Transactions on Power Systems, 2015, 30(4): 1714-1726.
- [6] BOLOGNANI S,CARLI R,CAVRARO G,et al. Distributed reactive power feedback control for voltage regulation and loss minimization[J]. IEEE Transactions on Automatic Control, 2013, 60(4):966-981.
- [7] 曾博,杨煦,张建华. 考虑可再生能源跨区域消纳的主动配电 网多目标优化调度[J]. 电工技术学报,2016,31(22):148-158. ZENG Bo,YANG Xu,ZHANG Jianhua. Multi-objective optimization for active distribution network scheduling considering renewable energy harvesting across regions[J]. Transactions of China Electrotechnical Society,2016,31(22):148-158.
- [8] VALVERDE G, CUTSEM T V. Model predictive control of voltages in active distribution networks [J]. IEEE Transactions on Smart Grid, 2013, 4(4):2152-2161.
- [9]任佳依,顾伟,王勇,等.基于模型预测控制的主动配电网多时间尺度有功无功协调调度[J].中国电机工程学报,2018,38(5):1397-1407.
 REN Jiayi,GU Wei,WANG Yong, et al. Multi-time scale active and reactive power coordinated optimal dispatch in active distribution network based on model predictive control [J]. Proceedings of the CSEE,2018,38(5):1397-1407.
- [10] 胡伟,郑乐,闵勇,等. 基于深度学习的电力系统故障后暂态稳定评估研究[J]. 电网技术,2017,41(10):3140-3146.
 HU Wei, ZHENG Le, MIN Yong, et al. Research on power system transient stability assessment based on deep learning of big data technique[J]. Power System Technology, 2017, 41 (10):3140-3146.
- [11] 李亚,刘丽平,李柏青,等. 基于改进 K-Means 聚类和 BP 神经 网络的台区线损率计算方法[J]. 中国电机工程学报,2016,36 (17):4543-4551.

LI Ya, LIU Liping, YANG Baiqing, et al. Calculation of line loss rate in transformer district based on improved K-Means clustering algorithm and BP neural network[J]. Proceedings of the CSEE, 2016, 36(17):4543-4551.

[12] 刘文轩,严凤,田霖,等. 基于 LVQ 神经网络的配电网故障定位方法[J]. 电力系统保护与控制,2012,40(5):90-95.
 LIU Wenxuan,YAN Feng,TIAN Lin,et al. LVQ neural network

approach for fault location of distribution network [J]. Power System Protection and Control, 2012, 40(5):90-95.

- [13] 王保义,赵硕,张少敏.基于云计算和极限学习机的分布式电力负荷预测算法[J].电网技术,2014,38(2):526-531.
 WANG Baoyi,ZHAO Shuo,ZHANG Shaomin. A distributed load forecasting algorithm based on cloud computing and extreme learning machine[J]. Power System Technology, 2014, 38(2): 526-531.
- [14] QUAN H, SRINIVASAN D, KHOSRAVI A. Incorporating wind power forecast uncertainties into stochastic unit commitment using neural network-based prediction intervals [J]. IEEE Transactions on Neural Networks & Learning Systems, 2015, 26(9):2123-2135.
- [15] 李晓利,高金峰.用于配电网多目标无功优化的改进粒子群优 化算法[J].电力自动化设备,2019,39(1):106-111.
 LI Xiaoli, GAO Jinfeng. Improved particle swarm optimization algorithm for multi-objective reactive power optimization of distribution network[J]. Electric Power Automation Equipment, 2019,39(1):106-111.
- [16] ELOBAID L M,ABDELSALAM A K,ZAKZOUK E E. Artificial neural network-based photovoltaic maximum power point tracking techniques: a survey[J]. IET Renewable Power Generation, 2015,9(8):1043-1063.
- [17] YONA A, SENJYU T, FUNABASHI T, et al. Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead PV power output correction[J]. IEEE Transactions on Sustainable Energy, 2013, 4(2):527-533.
- [18] 邓长虹,马庆,肖永,等.基于自学习迁移粒子群算法及高斯罚 函数的无功优化方法[J].电网技术,2014,38(12):3341-3346. DENG Changhong, MA Qing, XIAO Yong, et al. Reactive power optimization based on self-learning migration particle swarm optimization and gaussian penalty function[J]. Power System Technology,2014,38(12):3341-3346.
- [19] 王继东,冉冉,宋智林.基于改进深度受限玻尔兹曼机算法的 光伏发电短期功率概率预测[J].电力自动化设备,2018,38
 (5):43-49.
 WANG Jidong, RAN Ran, SONG Zhilin. Probability forecast of short-term photovoltaic power generation based on improved

depth restricted Boltzmann machine algorithm [J]. Electric Power Automation Equipment, 2018, 38(5):43-49.
 201 SAVADI E ESMAFUL S KEVNIA E Tracherer sub (see)

- [20] SAYADI F, ESMAEILI S, KEYNIA F. Two-layer volt / var / total harmonic distortion control in distribution network based on PVs output and load forecast errors [J]. IET Generation Transmission & Distribution, 2017, 11(8):2130-2137
- [21] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications [J]. Neurocomputing, 2006, 70 (1):489-501.

作者简介:

实晓波(1979—),男,江苏南京人,教授,博士,主要研究方向为分布式电源(储能)变流器优化控制、分布式电源高渗透配 电网、分布式发电与微电网(E-mail:dxb_ 2001@sina.com);

蔡 超(1985—),男,江苏南京人,工 程师,博士,主要研究方向为电力系统继电 保护(**E-mail**:caichao@outlook.com);

窦晓波

段向梅(1994—),女,江苏连云港人,

硕士研究生,主要研究方向为分布式电源高渗透配电网优化 (E-mail:220162198@seu.edu.cn)。

Optimal control method of distributed PV considering model errors in distribution network

DOU Xiaobo¹, CAI Chao², DUAN Xiangmei¹, HAN Jun², LIU Zhihan¹, CHEN Xi²

(1. School of Electrical Engineering, Southeast University, Nanjing 210096, China;

2. State Grid Economic Research Institute of China Electric Power Research Institute, Nanjing 210009, China)

Abstract: At present, the information collection is incomplete and the on-line accurate grid model is inaccessibility in distribution network, which leads to error of distributed PV(PhotoVoltaic) control and makes it difficult to meet the requirement of the safe operation for distribution network. Thus, an optimal control method of distributed PV considering model errors in distribution network is proposed. A rough calculation model of PV control based on approximate sensitivity is built. Meanwhile, the artificial intelligence assistant decision model is established adopting ELM(Extreme Learning Machine) method as a modification of the rough calculation model for PV control. Based on the above two models, the optimal control strategy of distributed PV considering model errors in distribution network is designed. Finally, the simulative results show that the proposed control method makes up the errors caused by the optimization only relying on grid model, and improves the accuracy of the optimal control.

Key words: distributed PV; distribution network; optimal control; approximate sensitivity; ELM; assistant decision

(上接第6页 continued from page 6)

Description and application of SSOA of neutral-point-clamped three-level converter

TU Chunming, LONG Liu, XIAO Biao, YU Xueping, CHAI Ming

(National Electric Power Conversion Control Engineering Technology Research Center,

Hunan University, Changsha 410082, China)

Abstract: In order to improve the reliability of the neutral-point-clamped three-level converter, based on the safe operating area of device, the mathematical model of the SSOA(Systematic Safe Operating Area) of converter is deduced with considering the converter topology, the stray parameters of DC bus, the delay of the control system, the temperature and other factors. The influence of junction temperature and wind speed on the SSOA boundary is analyzed quantitatively, and the corresponding three-dimensional graphics of the SSOA are depicted respectively. The proposed method is applied to the protection design of 55 kW/380 V converter prototype, and the experimental results validate the effectiveness of the protection boundary set based on SSOA, which show that the SSOA can guarantee the reliable and stable operation of the converter and improve the sustainable operation ability of the converter.

Key words: neutral-point-clamped three-level converter; SSOA; mathematical models; junction temperature; wind speed; protection design

附录A

表 A1 线路参数

Table A1	Line parameters
----------	-----------------

始端节点	末端节点	等效电阻/Ω	等效电抗/Ω	始端节点	末端节点	等效电阻/Ω	等效电抗/Ω
1	2	0.493	0.2511	1	18	0.164	0.1565
2	3	0.366	0.1864	18	19	1.5042	1.3554
3	4	0.3811	0.1941	19	20	0.4095	0.4784
4	5	0.819	0.707	20	21	0.7089	0.9373
5	6	0.1872	0.6188	2	22	0.4512	0.3083
6	7	0.7114	0.2351	22	23	0.898	0.7091
7	8	1.03	0.74	23	24	0.896	0.7011
8	9	1.044	0.74	5	25	0.203	0.1034
9	10	0.1966	0.065	25	26	0.2842	0.1447
10	11	0.3744	0.1238	26	27	1.059	0.9337
11	12	1.468	1.155	27	28	0.8042	0.7006
12	13	0.5416	0.7129	28	29	0.5075	0.2585
13	14	0.591	0.526	29	30	0.9744	0.963
14	15	0.7463	0.545	30	31	0.3105	0.3619
15	16	1.289	1.721	31	32	0.3410	0.5362
16	17	0.372	0.574				

附录 B 表 B1 隐含层偏置

Table B1 Bias of hidden neurons

节点	偏置	节点	偏置
1	0.714493696747410	14	0.237265992309270
2	0.801286062819921	15	0.546406632909462
3	0.257381431356295	16	0.799961792146336
4	0.226659403208819	17	0.902224699942504
5	0.263407457352751	18	0.871056585576793
6	0.710706011390183	19	0.597997272635442
7	0.842281058697062	20	0.313659251399834
8	0.122640133552490	21	0.0470571986325830
9	0.705039199849024	22	0.410139689928166
10	0.155292774750495	23	0.125245111496103
11	0.708213866238071	24	0.181489507933420
12	0.0379486490329606	25	0.821087178657175
13	0.898506046863483	26	0.00325540978697914

表 B2 输入层权重

Table B2 Input weights

1 输入层										
隐藏层	1	2	3	4	5	6	7	8	9	10
1	0.5102	0.2027	-0.4298	-0.7568	0.6293	-0.4786	-0.8948	0.7564	0.8894	-0.4873
2	0.3911	-0.5340	-0.2126	-0.5298	0.6231	-0.8697	-0.0002	-0.3394	0.4038	0.0408
3	-0.5211	-0.3711	0.4759	-0.9117	0.4262	0.2116	0.6336	0.6323	-0.6034	-0.5431
4	-0.1460	0.8157	0.1605	0.9068	0.8945	-0.3514	0.7125	0.8426	-0.9771	0.6604
5	0.1701	0.0540	-0.9187	0.4639	0.5240	-0.5462	0.5826	-0.9126	0.8405	0.7244
6	-0.1011	0.6156	-0.9127	-0.0799	0.3003	-0.2160	0.5187	0.4454	-0.0061	0.1508
7	-0.3023	0.1670	-0.7617	0.0891	0.1611	0.3212	-0.5771	0.9724	-0.5299	0.9229
8	0.6725	-0.3212	0.7620	0.4444	-0.4239	-0.9105	0.6697	-0.3411	-0.5513	-0.2053
9	0.6697	-0.8893	-0.5500	-0.9429	-0.9232	0.0428	0.7020	-0.1643	0.5440	0.7582
10	0.8560	-0.7196	0.7841	-0.9727	-0.7184	-0.9333	-0.5829	0.8099	-0.1610	-0.9270
11	-0.0043	0.4437	0.5683	0.4836	-0.0826	-0.9155	0.3398	-0.0804	0.5423	-0.3932
12	0.3995	0.5067	0.4720	-0.3326	-0.6469	0.0153	0.8301	-0.9098	-0.5013	-0.2680
13	-0.5300	0.3326	-0.8420	-0.6967	-0.3491	0.4076	-0.2556	-0.4444	0.5961	-0.7998
14	-0.9082	0.1620	-0.1714	-0.5273	-0.6356	-0.0340	-0.9080	-0.0697	-0.0685	-0.7145
15	-0.5189	0.4809	0.5776	0.1830	0.6540	0.4696	-0.0711	-0.2332	-0.7834	-0.7197
16	-0.2114	0.5081	0.0717	0.6010	0.7031	0.8711	0.4062	-0.3839	0.7026	0.8474
17	-0.4538	-0.4648	0.7978	0.2256	-0.2677	0.8965	0.8622	0.1196	0.1155	0.5143
18	-0.7677	0.8394	-0.9773	-0.2195	-0.7651	0.2299	-0.5629	-0.8451	0.7632	0.6717
19	-0.0273	0.5717	-0.2280	0.1596	-0.1434	0.8712	-0.5143	-0.3095	-0.6762	0.4089
20	0.6084	0.9073	-0.7714	-0.9081	0.8413	-0.0245	-0.4634	0.9869	0.8347	0.4287
21	0.9366	0.6243	0.4516	0.0560	0.0011	0.1102	-0.6382	-0.2931	0.3335	0.9012
22	-0.2126	0.0218	0.7487	-0.9906	-0.7334	-0.4070	-0.2016	-0.0407	-0.8061	0.2784
23	-0.7377	0.4417	0.9269	-0.2710	-0.0855	0.6792	-0.8095	0.0579	-0.6680	-0.6500
24	0.5426	0.5083	-0.4041	-0.4147	0.8459	0.0135	-0.7139	0.7260	-0.1251	0.7095
25	-0.7605	0.2687	-0.9612	0.6728	0.0845	-0.2118	0.7595	0.0191	0.0809	0.3765
26	0.2453	-0.6651	-0.9592	-0.6391	0.6962	0.3182	-0.3059	0.8929	0.6126	-0.4293

表 B3 输出层权重

Table B3 Onput weights 节点 偏置 节点 偏置 1 -7.10582744072005 14 -36.5175391506865 2 -22.49187902788927.15577115173983 15 -0.559862905430457 -27.2709301534425 3 16 30.2557314070824 26.2026601741431 4 17 5 -2.84869732037993 18 40.7268781852849 -12.2135296471432 -9.04421712200540 6 19 7 -3.804115018429168.67053806158853 20 74.5087254952146 31.8275607364891 8 21 9 12.3523118345792 22 -41.3604867333101 10 7.75062121074412 23 53.4395545835284 11 -25.402914724331024 -53.5156128597904 -45.6308189908737 12 -33.5720801067636 25 30.6293370807415 1.18793549806541 13 26