基于限流电抗电压积分值的环状柔性 直流配电网保护方案

戴志辉¹,刘雪燕¹,刘自强¹,陈思琦¹,李毅然¹,秦良栋² (1. 华北电力大学河北省分布式储能与微网重点实验室,河北保定071003; 2. 国网河北省电力有限公司,河北石家庄050021)

摘要:直流故障电流上升速度快,故障影响范围广,传统的交流故障检测方法不再适用。为此,基于系统复频 域模型提出一种基于直流线路限流电抗电压积分值的多端直流环网故障快速检测方法。首先,详细分析了 多端环状柔性直流配电网中各元件的时域和复频域等效模型。在此基础上,给出了限流电抗电压的计算方 法,其实现了系统等效模型在时域和复频域上的转化,求解简单,建模难度低,且对不同系统的建模有普适 性。其次,提出一种基于限流电抗电压积分值的故障检测方法,其抗嗓能力强且具有一定的耐受过渡电阻能 力。最后,在PSCAD/EMTDC中搭建仿真模型,验证了所提计算方法的正确性和保护方案的可行性。 关键词:直流配电系统;拉普拉斯变换;复频域等效;限流电抗电压;单端量保护

中图分类号:TM 77

文献标志码:A

DOI:10.16081/j.epae.202009031

0 引言

与传统的交流配电网相比,多端柔性直流配电 网因具有线路损耗低、传输容量大、系统控制更灵活 以及分布式能源接入更高效等优点,成为未来配电 网研究的热点之一^[1]。但另一方面,多端柔性直流 系统阻尼小、故障发展迅速,在故障后的几毫秒内就 能危及整个直流电网。而多端柔性直流配电网换流 站中含有大量不能承受较大电流的电力电子设备, 因此,快速可靠的直流故障识别方法对维持系统安 全稳定运行至关重要。通常情况下,由于故障后换 流站电容的放电,直流配电网的保护需在2ms左右 检测出直流线路故障^[2],而现有交流配电网的故障 检测技术无法达到该要求。因此,有必要针对多端 直流配电网提出一种快速、准确的故障检测方案。

为了限制故障电流大幅度增加,实际多选择在 直流线路两端安装限流电抗以减小故障电流^[34]。 由于限流电抗对电流具有吸收、阻滞作用,因此可利 用限流电抗两侧的故障特性差异来识别故障线 路^[5]。文献[6]利用发生区内、区外故障时限流电抗 电压初始值的差异构成故障识别判据,根据区内故 障下两极限流电抗电压初始值的差异构成故障选极 判据,但由于仅计算了限流电抗电压初始值,保护数

收稿日期:2019-11-26;修回日期:2020-07-24

基金项目:国家自然科学基金资助项目(51877084);国家重点 研发计划项目(2016YFB0900203);河北省自然科学基金资 助项目(E2018502063) 据窗短,抗干扰能力较弱,且对采样频率的要求高。 文献[7]利用边界元件对电流高频分量的吸收、阻滞 作用,通过电流高频暂态能量的大小区分区内、区外 故障,实现故障的快速、可靠识别,但其保护定值没 有完整的理论分析过程和计算方法。文献[8]利用 线路单端限流电抗电压变化率区分区内、区外故障, 但对变化率的求解中含有大量的高阶方程,增加了 计算时间和计算难度,且基于变化率的保护易受噪 声干扰,对保护的可靠性有一定影响。文献[9]以限 流电抗电压和模块化多电平换流器(MMC)直流侧 电压的组合为判据,实现直流线路和母线双极故障 的快速识别,但未涉及单极故障的识别方法。文献 [10]利用故障线路和非故障线路直流电抗器电压大 小和方向的不同,实现故障线路的快速识别;利用故 障线路正、负极直流电抗器电压大小的差异进行故 障类型和故障极的判别。文献[11]提出一种基于附 加电感电压积分值的保护方法,但对附加电感电压 的计算缺少完备的理论分析方法。另外,上述基于 边界特性的直流保护大多基于时域分析,而在多端 配电网中含有大量的换流器和直流线路,需要求解 大量的高阶微分方程。因此针对故障电流、电压,有 必要提出一种具有普适性的简便计算方法,并以此 为基础,提出快速可靠的直流线路保护方案。

本文针对MMC和电压源型换流器(VSC)共存的 环网中直流线路保护问题,首先详细分析了环状柔 性直流配电网中各元件的时域和复频域等效模型; 在此基础上,提出了系统的复频域等效模型方法,并 给出限流电抗电压波形的计算方法,将系统等效模 型从时域变换到复频域,其求解简单、建模难度低, 且对不同系统的建模有普适性;然后提出一种基于

Project supported by the National Natural Science Foundation of China(51877084),the National Key R&D Program of China (2016YFB0900203) and the Natural Science Foundation of Hebei Province(E2018502063)

限流电抗电压积分值的故障检测方法,利用区内、区 外故障下限流电抗电压的波形差异构成保护;最后, 在 PSCAD / EMTDC 软件中验证了所提计算方法的 正确性和保护方案的可行性。

1 环状柔性直流配电网的建模方法

多端环状柔性直流配电网的主要元件包括线路 及其两端的限流电抗、直流母线、MMC、VSC以及大 量的分布式电源。现有文献多是在时域上进行等效 模型的建立,但由于多端环状柔性直流配电网中含有 大量的电容、电感,时域计算需求解大量高阶方程, 加大了计算的复杂度。为简化建模以及求解,本文 将多端环状柔性直流配电网中各元件在复频域上进 行等效,并以此为依据搭建系统的复频域等效模型。

1.1 直流输电线路等效模型的建立

采用输电线路 π 型等效模型,由于中压直流配电 线路较短,可忽略对地电容的影响。附录 A 中的图 A1—A3分别给出电阻、电感和电容元件的时域和 复频域等效模型^[12],由此得出直流输电线路的时域、复 频域等效模型如图1所示。图中,i(t)、i(s)分别为时 域、复频域上流过线路的电流; $u_R(t)$ 、 $U_R(s)$ 分别为时 域、复频域上电阻 R 两端的电压; $u_L(t)$ 、 $U_L(s)$ 分别为 时域、复频域上电感 L 两端的电压; $Li_L(0^-)$ 仅取决于 电感电流的初始值,在电感电流初值为0的情况下, 此部分为0。

$\stackrel{i(t)}{} \underbrace{R}_{u_R(t)} \underbrace{L}_{u_L(t)}$	-0	$\overset{\underline{i(s)}}{\leftarrow} \underbrace{R}_{U_R(s)} \underbrace{sL}_{U_L(s)} \underbrace{Li_L(0^{-})}_{\leftarrow} Li_L$
(a) 时域等效模型		(b)复频域等效模型

图1 直流输电线路等效模型

Fig.1 Equivalent model of DC power transmission line

1.2 换流器等效模型的建立

多端柔性直流环网中的换流器主要包括 MMC、 VSC 和直流变压器(DCT)。故障初始阶段(故障后 大约 2 ms),短路电流主要是由 MMC 子模块电容、 VSC 和 DCT 直流侧并联大电容放电形成的。参考文 献[13],在该阶段 MMC 可等效为电容、电感的串联, 如图 2(a)所示; VSC 和 DCT 可等效为直流侧并联电 容,如图 2(b)所示(由于 VSC、DCT 在电容放电阶段 的等效模型相同,将两者的等效模型统称为 VSC 的 等效模型);则 MMC、VSC 的复频域等效模型分别如 图 2(c)、(d)所示。图中, $C_{eq}=6C/N,C$ 为 MMC 子模块 电容值,N为一相子模块数; $L_{eq}=2L_a/3, L_a$ 为桥臂电感; C_s 为 VSC 和 DCT 直流侧并联电容值; $i_L(0^-), U_c(0^-)$ 分别为电感电流和电容电压的初始值; U_p, U_a 分别为 直流正、负极电压; U_{de} 为直流电压。

1.3 系统等效模型的建立

环状柔性直流配电网中的任意元件可按1.1节

Fig.2 Equivalent model of converters

和1.2节中的方法进行等效,并以此为基础,根据网络拓扑建立系统的时域和复频域等效模型。由于任意拓扑的直流系统均由上述元件构成,该等效方法具有普适性。

2 故障特性分析方法

本文以附录A中图A4所示的六端环状柔性直 流配电网为载体,提出一种基于复频域等效模型的 故障特性分析方法。该方法在复频域上进行系统等 效并求解,降低了系统建模及故障求解的难度。

文献[14]指出,直流线路发生双极短路故障时, 故障过程可分为电容放电阶段、二极管导通阶段和 故障稳定阶段;发生单极接地故障时,故障过程可分 为故障极电容放电、健全极电容充电和故障稳定阶 段。由于电容放电阶段会产生非常大的故障电流, 易损坏电力电子器件,保护应在电容放电阶段完成 之前动作。对于最严重的双极故障,电容放电阶段 一般持续2ms左右^[15]。因此有必要对该阶段的故 障特性进行分析,并以此为依据提出快速可靠的故 障识别方法。

2.1 区内故障特性分析方法

2.1.1 系统等效模型的建立

发生单极接地故障时,系统正、负极不对称,可 将故障后不对称的正、负极电气量分别分解为对称 的一模和零模分量。正、负极电气量和一模、零模分 量的关系如式(1)所示。

$$\begin{bmatrix} e_0 \\ e_1 \end{bmatrix} = S \begin{bmatrix} e_p \\ e_n \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} e_p \\ e_n \end{bmatrix}$$
(1)

其中,e₁、e₀分别为一模、零模分量,零模分量不能在 2条线路中形成环流,只能流入大地,一模分量在2 条极线中形成环流,不流经大地;e_p、e_n分别为直流线 路正、负极电气量;S为解耦矩阵。

以图A4中的fi处发生正极接地故障为例,在电

容放电阶段,系统中各换流器都向故障点放电。忽略距故障点较远的端口 T_4 、 $T_2^{[16]}$,系统的一模时域、 复频域等效网络分别如图 3(a)、(b)所示。图中, Z_{c2} 、 Z_{c6} 分别为线路2、6的总阻抗,其大小为线路阻 抗、两端限流电抗之和; $L_{1.1}$ 、 $L_{1.6}$ 为线路1两端的限 流电抗; Z_{11} 为故障点距 $L_{1.1}$ 处的线路阻抗; Z_1 为线路1 的阻抗; U_{11} 为故障点距 $L_{1.1}$ 处的线路阻抗; Z_1 为线路1 的阻抗; U_{11} 为故障点时地电压的一模分量; $U_c(0^-)$ 为 故障前电容 C_s 上的电压, $U_c(0^-)=10$ kV。由于电容 放电阶段的压降主要集中在线路电感以及限流电抗 上,为简化计算,以下分析不计线路电阻与MMC等效 电阻的影响。

Fig.3 Equivalent 1-mode network during fault at f_1

在电容放电阶段,由端口 T_3 向故障点 f_1 的放电 电流主要有2条通路:①端口 T_3 -线路2-故障点 f_1 ; ②端口 T_3 -线路3-线路4-线路5-线路6-故障 点 f_1 。通路②的阻抗远大于通路①的阻抗,即流过 通路②的电流远小于流过通路①的电流。同理,由 端口 T_5 向故障点 f_1 的放电电流主要有2条通路:① 端口 T_5 -线路6-故障点 f_1 ;②端口 T_5 -线路5-线 路4-线路3-线路2-故障点 f_1 。流过通路②的电 流远小于流过通路①的电流。因此近似认为 T_3 和 T_5 之间无电流通过,将环网解环。

正常运行时限流电抗上的压降可以忽略,即 $Li_{L}(0^{-})\approx0$,系统的零模等效网络的时域和复频域模型分别如图4(a)、(b)所示。图中, U_{00} 为故障点对地电压的零模分量;由于故障前无零模分量,在零模网络中,故障前电容 C_{s} 上的电压为0,则 $U_{c}(0^{-})=0$ 。线路和换流器时域等效参数解耦时,取 $Z_{x,1}=Z_{x,0}, Z_{MMC_{1}}=Z_{MMC_{0}}$ 。其中, $Z_{x,1}, Z_{x,0}$ 分别为线路 $x(x=1,2,\cdots,6)$ 的一模、零模阻抗; $Z_{MMC_{0}}$ 分别为MMC的一模、零模等效阻抗。在此基础上,换流器和线路复频域等效参数解耦时,取 $Z_{x,1}(s)=Z_{x,0}(s), Z_{MMC_{0}}(s)=sL_{eq}+1/(sC_{eq})^{[17]}$ 。

根据f1处发生故障时的边界条件,即正极电压

图4 fi处发生故障时的零模等效网络

为0、负极对地电流为0,可得*f*₁处发生故障时系统的复合模量网络的复频域模型如图5所示。图中, *Z*_{3f_0}(*s*)、*Z*_{5f_0}(*s*)分别为端口T₃、T₅到故障点的零模等效阻抗。若线路1发生负极接地故障,分析方法与 正极接地故障类似。线路1发生双极故障时,由于 正负极电气量对称,一模网络即为复合模量网络。

图 5 f_1 处发生故障时的复合模量网络的复频域模型 Fig.5 Complex frequency model of complex modulus

network during fault at f_1

2.1.2 限流电抗电压的求解

根据图 5,以限流电抗 L_{1.1}为例,在电容放电阶段,L_{1.1}上电压的一模分量和零模分量分别如式(2)和式(3)所示。

$$u_{L_{1,1_{1}}}(s) = \frac{(U_{C}(0^{-})/s)Z_{f_{1}}(s)sL_{1,1}}{(Z_{f_{1}}(s) + Z_{f_{0}}(s))Z_{3f_{1}}(s)}$$
(2)

$$u_{L_{1,1_0}}(s) = \frac{(U_c(0^-)/s)Z_{f_0}(s)sL_{1,1}}{(Z_{f_1}(s) + Z_{f_0}(s))Z_{3f_0}(s)}$$
(3)

$$Z_{3f_{1}}(s) = Z_{31}(s) + sL_{1,1} + Z_{1f}(s) = \left[\frac{1}{(sC_{s})} + Z_{c2}(s) \right] / / \left[sL_{eq} + \frac{1}{(sC_{s})} \right] + sL_{1,1} + Z_{1f}(s)$$
(4)

$$Z_{3\underline{f}_{0}}(s) = 1/(sC_{s}) + Z_{c2}(s) + sL_{1.1} + Z_{1f}(s)$$
(5)
$$Z_{5\underline{f}_{1}}(s) = Z_{5\underline{f}}(s) + sL_{1.6} + Z_{\underline{f}_{1}}(s) - Z_{1f}(s) =$$

$$\left[\frac{1}{(sC_s) + Z_{c6}(s)} \right] / / \left[\frac{1}{(sC_s)} \right] +$$

$$L_{1.6} + Z_{f_{-1}}(s) - Z_{1f}(s)$$
 (6)

$$Z_{5f_{0}}(s) = Z_{5f_{1}}(s)$$
 (7)

$$Z_{f_{-1}}(s) = Z_{3f_{-1}}(s) // Z_{5f_{-1}}(s)$$
(8)

$$Z_{f_0}(s) = Z_{3f_0}(s) // Z_{5f_0}(s)$$
(9)

其中, $u_{L_{1,L_{1}}}(s)$ 、 $u_{L_{1,L_{0}}}(s)$ 分别为区内故障电容放电阶 段,复频域上限流电抗 $L_{1,1}$ 上电压的一模和零模分 量; $Z_{L_{1}}(s)$ 、 $Z_{L_{0}}(s)$ 分别为复频域上系统对于故障点 的一模、零模等效阻抗; $Z_{3L_{1}}(s)$ 、 $Z_{5L_{1}}(s)$ 分别为端口 T₃、T₅到故障点的一模等效阻抗; Z_{56} 为端口T₅、T₆之 间的等效阻抗; Z_{31} 为端口T₁、T₃之间的等效阻抗。结 合式(1)可得发生区内正极故障时的限流电抗 $L_{1,1}$ 的 正、负极电压如式(10)所示。

$$\begin{cases} u_{L_{1,1}^{n}}(s) = u_{L_{1,1}^{n}}(s) + u_{L_{1,1}^{n}}(s) \\ u_{L_{1,1}^{n}}(s) = u_{L_{1,1}^{n}}(s) - u_{L_{1,1}^{n}}(s) \end{cases}$$
(10)

其中, $u_{L_{1,1}}$ 、 $u_{L_{1,1}}$ 分别为限流电抗 $L_{1,1}$ 的正、负极电压。 在 MATLAB 中利用反拉普拉斯变换语句可得时域 的 $u_{L_{1,1}}$ 、 $u_{L_{1,1}}$ 。

同理可得,当发生区内双极故障时,系统的复合 复频域模量网络如图5所示,限流电抗L₁₁的正、负 极电压如式(11)所示。

$$u_{L_{1,1}^{p}}(s) = u_{L_{1,1}^{n}}(s) = \frac{(U_{c}(0^{-})/s)sL_{1,1}}{Z_{3f_{1}}(s)}$$
(11)

将式(10)、(11)相减可得附录B中的式(B1),可 知发生区内故障时,在电容放电阶段,发生双极短路 故障时 $u_{L_{1,1}}$ 大于发生单极接地故障时的 $u_{L_{1,1}}$ 。将式 (10)中 $u_{L_{1,1}}(s)$ 、 $u_{L_{1,1}}(s)$ 相减可得附录B中的式(B2), 可见发生区内单极故障时,故障极电压大于健全极 电压。且在其他条件不变的情况下,随着 Z_{1f} 的增 大, $u_{L_{1,1}}$ 减小。可知,在线路1靠近VSC端发生正极 接地故障时, $u_{L_{1,1}}$ 最小,记为 $u_{L_{1,1}p_{-imin}}$,如附录B中的式 (B3)所示。

2.2 区外故障特性分析方法

2.2.1 系统等效模型的建立

当线路6的 f_6 处发生故障时,对保护P_{L1}而言为 正向区外故障,此时系统的复频域模量网络等效方 法同区内故障,如图6所示。图中, Z_{c5} 为线路5的 总阻抗; L_{66} 、 L_{65} 为线路6两端的限流电抗; Z_6 为线路 6的阻抗; Z_6 为故障点距离 L_{66} 处的线路阻抗; Z_{1C0} 、 Z_{2L0} 分别为端口T₁、T₂到故障点的零模等值阻抗; $U_c(0^-)=10$ kV。

2.2.2 限流电抗电压的求解

区外 *f*₆ 处发生故障时,系统的复合复频域模量 网络如图 6(c)所示。电容放电阶段 *u*_{*L*₁}的一模分量 和零模分量分别如式(12)和式(13)所示。

$$u_{L_{1,1,1}}(s) = \frac{(U_{c}(0^{-})/s)Z_{f_{1}}(s)}{Z_{f_{1}}(s) + Z_{f_{0}}(s)} \times \frac{Z_{16}(s)sL_{1,1}}{Z_{16,1}(s)\left[sL_{eq} + 1/(sC_{eq}) + Z_{e1}(s)\right]}$$
(12)

图6 点f₆发生故障时系统等效模量网络

Fig.6 Equivalent modulus network after fault at f_6

$$u_{L_{1,1_0}}(s) = \frac{(U_c(0^-)/s)Z_{f_0}(s)sL_{1,1}}{(Z_{f_1}(s) + Z_{f_0}(s))Z_{1f_0}(s)}$$
(13)

$$Z_{1f_{1}}(s) = Z_{16}(s) + sL_{6.6} + Z_{6f}(s) = \left[sL_{eq} + 1/(sC_{eq}) + Z_{c1}(s) \right] / / \left[1/(sC_{s}) \right] + sL_{1.1} + Z_{6f}(s)$$
(14)

$$Z_{1\underline{f},0}(s) = 1/(sC_s) + sL_{6.6} + Z_{6f}(s)$$
(15)
$$Z_{2f,1}(s) = Z_{25}(s) + sL_{6.5} + Z_{6}(s) - Z_{6f}(s) =$$

$$\begin{bmatrix} 1/(sC_s) + Z_{c5}(s) \end{bmatrix} / / \begin{bmatrix} 1/(sC_s) \end{bmatrix} + sL_{6.5} + Z_6(s) - Z_{6f}(s)$$
(16)

$$Z_{2f_0}(s) = 1/(sC_s) + Z_6(s) - Z_{6f}(s)$$
(17)

$$Z_{f_{-1}}(s) = Z_{1f_{-1}}(s) // Z_{2f_{-1}}(s)$$
(18)

$$Z_{f_0}(s) = Z_{1f_0}(s) // Z_{2f_0}(s)$$
(19)

其中, $Z_{1f_1}(s)$ 、 $Z_{2f_1}(s)$ 分别为端口T₁、T₂到故障点的 一模等效阻抗; $Z_{6f}(s)$ 为故障点距离 L_{66} 处的线路阻 抗; Z_{16} 为端口T₁、T₆之间的等效阻抗; Z_{25} 为端口T₂、T₅ 之间的等效阻抗。结合式(1)可得发生区外正极故 障时限流电抗 $L_{1.1}$ 的正、负极电压如式(10)所示。在 MATLAB中求得时域的 $u_{L_{1.1}}$ 。

同理可得,发生区外双极接地故障时,限流电抗 L₁₁的正、负极电压如式(20)所示。

$$u_{L_{1,1}\mathbb{P}}(s) = u_{L_{1,1}\mathbb{P}}(s) = \frac{U_{C}(0^{-})L_{1,1}Z_{16}(s)}{Z_{1f_{1}}(s)\left[sL_{eq} + \frac{1}{(sC_{eq}) + Z_{e1}(s)}\right]}$$
(20)

将式(12)、(13)代入式(10),将结果分别与式 (20)相减可得附录B中的式(B5),可知发生正向区 外故障时,在电容放电阶段仍有双极短路故障下的 u_{L_1} 大于单极接地故障下的 u_{L_1} 。且在其他条件不变 的情况下,随着 Z_{cf} 的增大, u_{L_1} 减小。因此,当在线 路6首端发生双极短路故障时, u_{L_1P} 取区外 f_6 处发生 故障时的最大值 u_{L_1P} ,如附录B中的式(B6)所示。

将 u_{L1,1P},imin 和 u_{L1,1P},omax</sub> 相减后可知,发生区内故障 时 u_{L1,1P} 的最小值大于发生正向区外故障时 u_{L1,1P} 的最 大值。故可利用限流电抗电压的大小识别区内、外 故障。发生区内故障时,将 u_{L1,1P} 和 u_{L1,1P} 相减可得故 障极的限流电抗电压恒大于健全极的限流电抗电 压,因此可利用限流电抗电压的值区分故障极。

3 直流线路保护方案

3.1 方向启动元件

为防止保护频繁启动,参考文献[7]设计了基于 限流电抗电压压降的方向启动元件,由于发生反方 向故障时,不满足保护启动判据,保护不启动,因此 称其为方向启动元件。定义正极线路的正方向为母 线指向线路,负极线路正好相反。以保护P_{1.1}为例, 正常运行时,u_{L1}=0;当发生正向故障时,u_{L1}>0;当发 生反向故障时,限流电抗电压u_{L1}<0。且故障发生 时,方向判据以首次检测到的非零电压值作为启动 开始的依据。因此保护启动判据如式(21)所示。

$$u_{L_{11}} > V_{\text{set}} \tag{21}$$

其中, $u_{L_{1,1}}$ 为保护P_{1,1}检测到的 $L_{1,1}$ 上的电压; V_{set} 为保 护的启动定值,其整定原则为躲过正常运行时 $u_{L_{1,1}}$ 的 最大值,本文取 V_{set} =0.05 kV。为躲避雷击干扰,启 动数据窗设为0.3 ms。

3.2 故障识别

由第2节可知,发生区内故障时限流电抗电压的大小与发生正向区外故障时限流电抗电压的大小存在明显差异,因此通过限流电抗电压能够可靠地区分区内、区外故障。同时,为了避免测量误差和噪声干扰,且能不断积累区内外故障的差异性,本文对限流电抗电压进行积分。以保护P_{L1}为例,其限流电抗电压*u_{L1}*的积分为:

$$u_{L_{1.1}-\text{int}} = \int_{0}^{T} u_{L_{1.1}} dt$$
 (22)

其中,*T*为积分时间,综合考虑保护的速动性和可靠性,取*T*=0.5 ms。故障识别判据为:

$$u_{L_{11}\text{-int}} > u_{\text{set}} \tag{23}$$

$$u_{\rm set} = K_{\rm rel} u_{L_{1,1} _ \rm int_ \, omax} \tag{24}$$

其中, u_{set}为故障识别定值, 其整定原则为躲过发生 正向区外故障时限流电抗电压积分值的最大值; $u_{L_{1,1}\text{-int_omax}}$ 为发生正向区外故障时 $u_{L_{1,1}\text{-int}}$ 的最大值; K_{rel} 为可靠系数,取为1.5。由第2节可知,在线路6首端 发生双极短路故障时, $u_{L_{1,1}\text{-int}}$ 取发生正向区外故障时 的最大值 $u_{L_{1,1}\text{-int}}$ 和发生正向区外故障时 (22)及式(B6)中得 $u_{L_{1,1}\text{-int}}$,代入式(24)可得 u_{set} 。 另外,发生正向区外故障时,限流电抗电压从0开始 逐渐增加,其积分值也从0开始逐渐增加。而本文 的模型等效和故障分析均是针对电容放电阶段(故 障后2ms),为防止故障2ms后保护误动,并综合考 虑保护的可靠性,规定若保护在启动后的1ms内没 有判定故障,则闭锁保护。

3.3 故障选极

当限流电抗电压满足式(23)时,进行故障选极。 由第2节可知,发生区内故障时,电容放电阶段故障 极的限流电抗电压恒大于健全极的限流电抗电压。 以保护P_{xy}(x为线路编号,y为母线编号)为例,故障 选极判据表示为:

$$\begin{cases} \left| u_{L_{x,y}p_int} \right| / \left| u_{L_{x,y}n_int} \right| > \lambda_{set} & E W \& \mathbb{P} \\ \left| u_{L_{x,y}p_int} \right| / \left| u_{L_{x,y}n_int} \right| < 1/\lambda_{set} & \bigoplus W \& \mathbb{P} \\ 1/\lambda_{set} < \left| u_{L_{x,y}p_int} \right| / \left| u_{L_{x,y}n_int} \right| < \lambda_{set} & Z W \& \mathbb{P} \end{cases}$$

$$(25)$$

其中, $|u_{L_{x,p_int}}|$ 、 $|u_{L_{x,n_int}}|$ 分别为限流电抗 L_{xy} 的正、负极 电压积分值绝对值; λ_{set} 为故障选极定值。由第2节 的分析可以知道, 当发生双极故障时, 正、负极限流 电抗电压积分值相等, $|u_{L_{x,p_int}}|/|u_{L_{x,n_int}}|=1$; 当发生正 极故障时, $|u_{L_{x,p_int}}|/|u_{L_{x,n_int}}|>1$; 当发生负极故障时, $|u_{L_{x,n_int}}|<1$ 。因此 λ_{set} 为略大于1的正数, 本 文取 $\lambda_{set}=1.2$ 。

需要说明的是,若限流电抗本体发生故障,则其 参数会发生变化,原保护整定值可能无法保证保护 的可靠性,因此本保护的出口逻辑总结为:本保护判 据成立且限流电抗本体无故障。

4 仿真验证

在 PSCAD / EMTDC 中搭建如附录 A 中的图 A4 所示的六端环状直流配电网模型,其参数如附录 A 中的表 A1 所示,采样频率为 20 kHz。结合系统参数 和第 3 节的整定原则,可得保护 $P_{1.1}$ 的保护启动定值 $V_{set} = 0.05 \text{ kV}$,故障识别定值 $u_{set} = 0.6 \text{ kV} \cdot \text{ms}$,故障选 极定值 $\lambda_{set} = 1.2$ 。

4.1 区内故障

(1)双极短路故障。

假设在线路1中点发生双极短路故障,故障时

由图7可以看出,限流电抗电压的仿真值和计 算值非常接近,证明了前文理论分析的正确性。另 外,在故障初始时刻0.6 s, u_{L₁}=u_{L₁},且大于保护启 动定值,保护启动。由图7(b)可知,正、负极的电抗 电压积分值相等,且满足连续3个采样点均大于故 障识别定值,因此保护经0.9 ms判定为区内双极短 路故障,保护正确动作。

(2)单极接地故障。

假设在线路1中点发生正极接地故障,其他仿 真设置同双极短路故障仿真,仿真结果如图8所示。

在图 8(a)中,故障初始时刻为 0.6 s, $u_{L_{1,1}}$, $u_{L_{1,1}}$ 均 大于保护启动定值,保护经 0.3 ms 启动。由图 8(b) 可知, $u_{L_{1,1}$,int、 $u_{L_{1,1}}$ 均满足连续 3 个采样点大于故障 识别定值,且 $|u_{L_{a,p},int}|/|u_{L_{a,n},int}|=3.86>1.2$,因此保护 经过 0.9 ms判定发生区内正极接地故障,保护能正 确动作。

4.2 区外故障

假设 f_2 、 f_6 分别为线路2和线路6的中点,在 f_2 、 f_6 处发生区外正极接地故障,其他设置同双极短路 故障仿真,仿真结果如图9所示。

由图 9(a)可知,当 f_2 处发生反向区外故障时, u_{L_1} 小于启动定值,保护不启动;当 f_6 处发生正向区 外故障时, u_{L_1} 在第4个采样点大于启动定值,保护

启动,启动时间为0.5 ms。由图9(b)可知,在保护启动后的1 ms内,*u*_{L1}的积分值恒小于故障识别定值,因此保护闭锁,不会误动。

4.3 过渡电阻的影响

以上分析未考虑过渡电阻,因此本节研究过渡 电阻的影响。假设在线路1中点分别发生经5Ω、 10Ω过渡电阻的正极接地故障,根据式(2)-(11), 得故障后2ms内限流电抗电压波形如图10所示。

由图 10 可见:加入过渡电阻后,限流电抗电压 的理论值和积分值仍高度接近,因此上述等效和计 算方法不受过渡电阻的影响;过渡电阻不会改变限 流电抗电压的初始值,但会加速限流电抗电压的下 降速度,且随着过渡电阻越大,电压下降得越快。

附录C中的表C1列出了在不同的过渡电阻、不同故障类型下本文所提保护的动作情况;附录C中的表C2为正极经50Ω过渡电阻接地故障下,其他 文献基于限流电抗电压和电压变化率的保护动作情况。可以看出,本文所提保护方法具有较强的抗过 渡电阻能力。

4.4 雷击干扰的影响

当直流线路遭受雷击干扰时,直流电流会突增,

引起限流电抗电压激增,可能导致保护误动。为了 验证所提保护方法的抗雷击干扰能力,参考文献 [18]中的雷电流模型,设0.6s时在线路1中点发生雷 电干扰,其仿真结果如图11所示。

Fig.11 Simulative results of lightning interference

由图 11(a)可以看出,雷电流持续时间大约为 200 μs,由于启动判据数据窗为0.3 ms,因此在雷击 干扰下保护不启动,不会发生误动。由图 11(b)可 以看出,雷击干扰使得限流电抗电压发生了突变,文 献[10]中所提的基于限流电抗电压的直流保护会发 生误动;雷击干扰也使得限流电抗电压变化率发生 了突变,因此文献[8]中所提的基于限流电抗电压变 化率的保护会误动。因此,对比上述2种方法,本文 所提保护方法具有较强的抗雷击干扰能力。

4.5 噪声的影响

若采样信号受到噪声干扰,保护可能会误动。 考虑最严重的情况,即在线路6首端发生双极短路 故障时,向限流电抗电压信号中添加信噪比为10 dB 的噪声分量,所测得的电感电压及其积分值如图12 所示。由图12(a)可以看出,相比于无噪声的情况,加 入噪声会直接影响限流电抗电压波形,使其幅值 和极性都发生波动。但由图12(b)可知,即使存在 信噪比为10 dB的白噪声,在保护启动后的1 ms内, 电压积分值始终小于保护定值,因此保护不会误动。

在采用文献[8]所提方法的情况下,向限流电抗 电压信号中添加信噪比为30 dB的噪声分量,保护 的动作情况如图13所示。可以看出,在故障后第2 个采样点附加电抗电压变化率大于保护阈值,文献

Fig.13 Influence of noise on method in Reference[8]

[8]所提保护方法可能误动。相比之下,本文所提保 护方法有较强的抗噪声能力。

4.6 限流电抗大小的影响

由于本文利用限流电抗电压积分值构成保护判据,因此限流电抗 L_{xy} 的大小是影响保护选择性和速动性的一大因素。一方面,限流电抗电压与 L_{xy} 的大小成正比,当 L_{xy} 减小时,限流电抗电压也减小,导致保护定值整定困难;另一方面, L_{xy} 越小,其作为边界的阻滞效果就越小,区内、区外故障特性的差异就越小,保护的灵敏度就越低。但是, L_{xy} 不能过大,因为 L_{xy} 越大,意味着故障暂态过程中存储的能量越大,其能量释放越慢,增加了故障切除的时间;此外,较大的 L_{xy} 也增加了正常运行时的电阻损耗,不利于系统的稳定性^[19]。以保护 P_{L1} 为例,分别设置不同的 L_{xy} 来探究保护的动作情况,仿真结果如图14所示。

图 14 的上图为线路 1 末端发生正极经 20 Ω 过 渡电阻接地故障时的电抗电压,图 14 的下图为区外 线路6 首端发生双极故障时的电抗电压。由图 14 可 以看出,随着L_x,的减小,限流电抗电压逐渐减小,且 区内外故障的限流电抗电压差异性也越小,与理论 分析一致;且随着L_{xy}进一步减小到2mH,发生区内 故障时的积分值将小于发生正向区外故障时的积分 值,保护误动。本文综合考虑限流、保护的选择性和 裕度,并结合已有文献中对L_{xy}的选取,取L_{xy}=5mH。 实际应用中,L_x,的大小应综合考虑与直流断路器、 换流器、保护等的配合^[20]。

5 结论

本文针对 MMC 和 VSC 共存的柔性中压直流配 电网的直流线路保护,首先详细分析了环状柔性直 流配电网中各元件的时域和复频域等效模型。在此 基础上,提出了系统的复频域等效模型方法,并给出 限流电抗电压波形的计算方法。该方法仅利用了故 障后 2 ms 内的电气量,并利用拉普拉斯和反拉普拉 斯变换相结合对该时段内限流电抗电压的求取提供 了详细的计算方法,为保护原理和定值整定提供了 理论依据。本文主要结论如下:

(1)本文建立了对任意系统均适用的复频域等 效模型建立方法,降低了建模难度,并提出一种复频 域故障分析方法,简化了计算过程;

(2)本文所提保护方案仅利用了线路单端电气量,对于区内故障,可在1ms内同时判别故障区段和故障类型,满足柔性直流中压配电网对保护速动性的要求;

(3)本文所提保护方案利用积分构成判据,具有 较强的抗噪声、抗过渡电阻和抗雷击干扰的能力。

附录见本刊网络版(http://www.epae.cn)。

参考文献:

- [1] 宋强,赵彪,刘文华,等.智能直流配电网研究综述[J].中国 电机工程学报,2013,33(25):9-19.
 SONG Qiang,ZHAO Biao,LIU Wenhua, et al. An overview of research on smart DC distribution power network[J]. Proceedings of the CSEE,2013,33(25):9-19.
- [2]姚良忠,吴婧,王志冰,等.未来高压直流电网发展形态分析
 [J].中国电机工程学报,2014,34(34):6007-6020.
 YAO Liangzhong,WU Jing,WANG Zhibing, et al. Pattern analysis of future HVDC grid development [J]. Proceedings of the CSEE,2014,34(34):6007-6020.
- [3] 孙栩,王华伟,雷霄,等.架空线柔性直流电网的直流短路电流 限制研究[J].电力自动化设备,2017,37(2):219-223.
 SUN Xu,WANG Huawei,LEI Xiao, et al. Restriction of DC short circuit current for overhead lines of flexible DC grid[J]. Electric Power Automation Equipment,2017,37(2):219-223.
- [4] 林湘宁,刘琦,范理想,等.基于突变能量比值的多端柔性直 流电网闭锁式纵联保护方案[J].电力自动化设备,2020,40 (4):2-8,16.

LIN Xiangning,LIU Qi,FAN Lixiang,et al. Blocking pilot protection based on ratio of superimposed energy for VSC-MTDC grid[J]. Electric Power Automation Equipment, 2020, 40(4): 2-8,16.

- [5]张明,和敬涵,罗国敏,等.基于本地信息的多端柔性直流电网 故障定位方法[J].电力自动化设备,2018,38(3):155-161.
 ZHANG Ming,HE Jinghan,LUO Guomin, et al. Local information-based fault location method for multi-terminal flexible DC grid[J]. Electric Power Automation Equipment, 2018, 38 (3):155-161.
- [6] 戴志辉,黄敏,苏怀波,等.环状柔直配网线路的单端量保护原理[J].中国电机工程学报,2018,38(23):6825-6836,7117.
 DAI Zhihui, HUANG Min, SU Huaibo, et al. Single-terminal quantity based line protection for ring flexible DC distribution system[J]. Proceedings of the CSEE,2018,38(23):6825-6836,7117.
- [7] 李斌,何佳伟,李晔,等.基于边界特性的多端柔性直流配电系统单端量保护方案[J].中国电机工程学报,2016,36(21): 5741-5749.
 LI Bin,HE Jiawei,LI Ye,et al. Single-ended protection scheme based on boundary characteristic for the multi-terminal VSCbased DC distribution system[J]. Proceedings of the CSEE, 2016,36(21):5741-5749.
- [8] 祁晓敏,裴玮,李鲁阳,等. 基于限流电感电压的多端交直流 混合配电网直流故障检测方案[J]. 电网技术,2019,43(2): 537-545.

QI Xiaomin, PEI Wei, LI Luyang, et al. DC fault detection scheme for multi-terminal hybrid AC/DC distribution network based on current-limiting inductor voltage[J]. Power System Technology, 2019, 43(2):537-545.

- [9]姚良忠,吴婧,王志冰,等.柔性高压直流环网直流侧故障保护 策略研究[J].中国电机工程学报,2017,37(增刊):1-11.
 YAO Liangzhong,WU Jing,WANG Zhibing, et al. Studies on DC fault protection strategies for MMC based HVDC grid[J].
 Proceedings of the CSEE,2017,37(Supplement):1-11.
- [10] 周家培,赵成勇,李承昱,等.基于直流电抗器电压的多端柔性 直流电网边界保护方案[J].电力系统自动化,2017,41(19): 89-94,146.
 ZHOU Jiapei, ZHAO Chengyong, LI Chengyu, et al. Boundary

protection scheme for multi-terminal flexible DC grid based on voltage of DC reactor[J]. Automation of Electric Power Systems, 2017, 41(19): 89-94, 146.

- [11] 杨赛昭,向往,文劲字.基于限流电抗器电压差异性的架空 柔直电网故障检测方法[J].中国电机工程学报,2019,39 (22):1196-1211.
 YANG Saizhao,XIANG Wang,WEN Jingyu. A fault protection scheme based on the difference of current-limiting reactor voltage for overhead MMC based DC grids[J]. Proceedings of the CSEE,2019,39(22):1196-1211.
- [12] 江缉光,刘秀成.电路原理[M].北京:清华大学出版社,2007: 355-358.
- [13] 薛英林,徐政. C-MMC 直流故障穿越机理及改进拓扑方案
 [J]. 中国电机工程学报,2013,33(21):63-70.
 XUE Yinglin,XU Zheng. DC fault ride-through mechanism and improved topology scheme of C-MMC[J]. Proceedings of the CSEE,2013,33(21):63-70.
- [14] 李斌,何佳伟.柔性直流配电系统故障分析及限流方法[J]. 中国电机工程学报,2015,35(12):3026-3036.
 LI Bin, HE Jiawei. DC fault analysis and current limiting technique for VSC-based DC distribution system[J]. Proceedings of the CSEE,2015,35(12):3026-3036.
- [15] SALEH K A, HOOSHYAR A, EL-SAADANY E F. Hybrid passive-overcurrent relay for detection of faults in low-voltage DC grids[J]. IEEE Transactions on Smart Grid, 2017, 8(3): 1129-1138.
- [16] XIANG Wang, YANG Saizhao, XU Lie, et al. A transient

voltage-based DC fault line protection scheme for MMC-based DC grid embedding DC breakers[J]. IEEE Transactions on Power Delivery, 2019, 34(1): 334-345.

- [17] 王艳婷,范新凯,张保会.柔性直流电网行波保护解析分析与 整定计算[J].中国电机工程学报,2019,39(11):3201-3211.
 WANG Yanting, FAN Xinkai, ZHANG Baohui. The analytical analysis and protection setting of traveling wave protection in VSC-HVDC grid[J]. Proceedings of the CSEE,2019,39(11): 3201-3211.
- [18] 许小雪,刘建锋,江玉蓉. 基于多频带能量的高压直流输电线 路单端暂态电流保护[J]. 电力系统保护与控制,2016,44(22): 32-39.

XU Xiaoxue, LIU Jianfeng, JIANG Yurong. HVDC transmission line protection based on single-ended transient current using multiband energy[J] Power System Protection and Control, 2016,44(22):32-39.

[19] 刘剑,邰能灵,范春菊,等. 多端 VSC-HVDC 直流线路故障限流 及限流特性分析[J]. 中国电机工程学报,2016,36(19):5122-

5133,5393.

LIU Jian, TAI Nengling, FAN Chunju, et al. Fault current limitation and analysis of current limiting characteristic for multiterminal VSC-HVDC DC lines[J]. Proceedings of the CSEE, 2016, 36(19):5122-5133, 5393.

[20] DAMAKI A A,HAJHOSEINI ZARCHI S H. Optimal design and analysis of a variable reactor fault current limiter [J]. IET Electric Power Applications, 2017, 11(9):1619-1626.

作者简介:

載志辉(1980—),男,宁夏固原人,副 教授,博士,主要研究方向为电力系统保护 与控制(E-mail:daihuadian@163.com); 刘雪燕(1997—),女,重庆人,硕士研究 生,主要研究方向为电力系统保护与控制。 (编辑 任思思)

Protection scheme for ring flexible DC distribution grids based on integration of current-limiting reactance voltage

DAI Zhihui¹, LIU Xueyan¹, LIU Ziqiang¹, CHEN Siqi¹, LI Yiran¹, QIN Liangdong²

(1. Hebei Key Laboratory of Distributed Energy Storage and Microgrid,

North China Electric Power University, Baoding 071003, China;

2. State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050021, China)

Abstract: The traditional AC fault detection methods are not applicable for DC fault identification considering the fact that DC fault current rises rapidly and has a wide influencing range. Therefore, a fast fault detection approach based on the integration of current-limiting reactance voltage for the multi-terminal DC ring network is proposed based on the complex frequency domain model of the system. Firstly, the equivalent models of each component of multi-terminal DC ring network in both time domain and complex frequency domain are analyzed in detail. Based on this, the calculation method of current-limiting reactance voltage is elaborated, by which the transformation of the system model between time domain and complex frequency domain is realized. The calculation method has the advantages of simple solution, low modeling difficulty and universality for modeling of different systems. Subsequently, a fault detection method based on the integration of current-limiting reactance voltage is proposed, which has strong anti-noise ability and a certain ability against transition resistance. Finally, the validity of the proposed calculation method and the feasibility of the protection scheme are verified via PSCAD / EMTDC based simulations.

Key words: DC distribution grid; Laplace transform; complex frequency domain equivalence; current-limiting reactance voltage; single-ended protection

附录 A

图 A1 电阻元件等效模型 Fig.A1 Equivalent model of resistance 图 A2 电感元件等效模型 Fig.A2 Equivalent model of inductor 图 A3 电容元件等效模型 Fig.A3 Equivalent model of capacitor

本文研究的六端环网柔性直流配电网的拓扑结构如图 A4 所示,其包括交流系统、2 个 MMC (MMC₁和 MMC₂)、2 个 VSC (VSC₁和 VSC₂)、单向直流变压器 (UDCT)和双向直流变压器 BDCT、1 个光伏电源、1 台风机、交直流负荷和交直流线路。图中,T₁—T₆为端口编号;UDCT 和 BDCT 的拓扑结构均如图 A5 所示, 图中 2 个高频 H 桥经高频变压器相连接,高频变压器的电压比为 n: 1, C₁、C₂分别为输入、输出端并联电容。 为抑制单极接地故障后桥臂子模块的放电,MMC 交流侧采用不接地方式;为保证正常运行时正负极电压平衡 以及单极接地故障线路切除后正负极电压的恢复,MMC 直流侧采用经大电阻接地的方式;对于为维持直流侧 正负极对称运行,保证保护能快速识别故障,VSC 和直流变压器 (DCT)采用分裂电容中点接地。系统的控 制策略、保护配置与文献[8]中的相同。限流电抗电压测量方法为:互感器分别测量限流电抗两端的电压,并 规定正极线路限流电抗上的电压为母线端电压减线路端电压,负极线路上的限流电抗电压则为线路端电压减 母线端电压。

图 A4 环状多端柔性直流配电网

图 A5 DCT 拓扑图 Fig.A5 Topology of DCT

Tuble III System parameters					
系统参数	数值				
额定直流电压/kV	10				
桥臂电感/H	0.01				
子模块数	24				
交流电抗器/mH	5				
直流限流电抗/mH	5				
直流电容/µF	4500				
线路1、2、4、5长度/km	5				
线路3、6长度/km	15				

表 A1 系统参数 Table A1 System parameters

附录 B

发生区内故障时有:

$$u_{L_{1,1},p_{-}sj}(s) - u_{L_{1,1},p_{-}p}(s) = \frac{U_{C}(0^{-})L_{1,1}Z_{0}(s)(Z_{3f_{-}0}(s) - Z_{3f_{-}1}(s))}{(Z_{1}(s) + Z_{0}(s))Z_{3f_{-}1}(s)Z_{3f_{-}0}(s)}$$
(B1)

$$u_{L_{1,1}p}(s) - u_{L_{1,1}n}(s) = u_{L_{1,1_{-1}}}(s) + u_{L_{1,1_{-0}}}(s) - \left(u_{L_{1,1_{-1}}}(s) - u_{L_{1,1_{-0}}}(s)\right) = 2u_{L_{1,1_{-0}}}(s)$$
(B2)

$$u_{L_{1,l}p_{-imin}} = \frac{U_{C}(0^{-})L_{1,1}\left\{Z_{f_{-1}}(s)\left[1/(sC_{s}) + sL_{1,1} + Z_{f_{-1}}(s)\right] + Z_{f_{-0}}(s)(Z_{31}(s) + sL_{1,1}\right\}}{(Z_{f_{-1}}(s) + Z_{f_{-0}}(s))\left[1/(sC_{s}) + sL_{1,1} + Z_{f_{-1}}(s)\right](Z_{31}(s) + sL_{1,1})}$$
(B3)

$$\begin{cases} u_{L_{1,l}p}(s) = u_{L_{1,1-1}}(s) + u_{L_{1,1-0}}(s) = \\ \frac{U_{C}(0^{-})L_{1,1}\left(Z_{f_{-1}}(s)Z_{3f_{-0}}(s) + Z_{f_{-0}}(s)Z_{3f_{-1}}(s)\right)}{(Z_{f_{-1}}(s) + Z_{f_{-0}}(s))Z_{3f_{-1}}(s)Z_{3f_{-0}}(s)} \\ u_{L_{1,l}n}(s) = u_{L_{1,1-1}}(s) - u_{L_{1,1-0}}(s) = \\ \frac{U_{C}(0^{-})L_{1,1}\left(Z_{1}(s)Z_{3f_{-0}}(s) - Z_{0}(s)Z_{3f_{-1}}(s)\right)}{(Z_{1}(s) + Z_{0}(s))Z_{3f_{-1}}(s)Z_{3f_{-0}}(s)} \end{cases}$$
(B4)

将式(B3)从复频域转换到时域上再与0比较大小。令f(t)为式(B3)的时域表达式,如图B1 所示。图B1(a)为不同限流电抗 $L \[Thereforemath{\bar{r}}\] f(t)$ 的变化曲线,可以看出,在故障时刻f(t)最小且满足f(t) > 0,随着时间增大f(t)逐渐增大;随着限流电抗的增大,f(t)也增大且不改变上述f(t)的变化趋势,因此f(t) > 0成立。图B1(b)为L=5mH时不同子模块数 $N \[Thereforemath{\bar{r}}\] f(t)$ 的变化曲线,可以看出在故障时刻f(t)最小,之后逐渐增大;随着子模块数(即换流器参数)的增大,f(t)减小。当子模块数目达到250时,f(t)的最小值接近0。鉴于目前±500kV直流电网中MMC子模块数一般为200左右^[13]、配电网中子模块数远小于该值,故f(t)仍大于0。综上所述,f(t) > 0成立。

Fig.B1 Change trend of f(t)

发生区外故障时有:

$$u_{L_{1,lP}=sj}(s) - u_{L_{1,lP}=P}(s) = \frac{U_{C}(0^{-})L_{1,1}\left\{Z_{f_{-0}}(s)Z_{1f_{-0}}(s)\left[sL_{eq}+1/(sC_{eq})+Z_{c1}(s)\right]\right\} - Z_{1}(s)Z_{1f_{-1}}(s)Z_{16}(s)}{Z_{1f_{-1}}(s)\left[sL_{eq}+1/(sC_{eq})+Z_{c1}(s)\right](Z_{f_{-1}}(s)+Z_{f_{-0}}(s))Z_{1f_{-0}}(s)}$$
(B5)

同理可证式(B5)的时域计算结果大于0恒成立。

$$u_{L_{1,1}P_{-}omax} = \frac{U_{C}(0^{-})L_{1,1}\left[sL_{eq}+1/(sC_{eq})+Z_{c1}(s)\right]//\left[1/(sC_{s})\right]}{Z_{1f_{-}1}(s)\left[sL_{eq}+1/(sC_{eq})+Z_{c1}(s)\right]} \quad (B6)$$

附录 C

过渡电阻/Ω	$u_{L_{1,1}p_int}$ / (kV·ms)	$u_{L_{1,l}n_int}$ / (kV·ms)	$\left u_{L_{x,y}\text{-int}} \right / \left u_{L_{x,y}\text{-int}} \right $	判断结果
5	13.11/12.45/11.81	4.16/3.99/3.73	3.16/3.13/3.17	区内正极
10	10.28/9.31/8.45	3.43/3.21/2.98	3.00/2.91/2.84	区内正极
20	6.76/5.63/4.73	2.56/2.27/2.04	2.65/2.49/2.32	区内正极
50	2.98/2.45/1.89	1.58/1.39/1.18	1.89/1.77/1.61	区内正极
5	30.6/28.76/27.1	30.6/28.76/27.1	1	区内双极
10	26.86/25.12/23.85	26.86/25.12/23.85	1	区内双极
20	10.02/9.68/8.34	10.02/9.68/8.34	1	区内双极
50	8.36/7.15/5.98	8.36/7.15/5.98	1	区内双极
	过渡电阻/Ω 5 10 20 50 5 10 20 50 50	过渡电阻/Ω	过渡电阻/Ω ^{<i>u</i>} _{L1,P_int} /(kV·ms) <i>u</i> _{L1,P_int} /(kV·ms)	过渡电阻/Ω $\begin{matrix} u_{L_{1,1},p_int} / (kV\cdotms) \\ u_{L_{1,1},n_int} / (kV\cdotms) \end{matrix}$ $\begin{matrix} u_{L_{1,1},n_int} \end{vmatrix} / \begin{matrix} u_{L_{x,2},n_int} \end{vmatrix}$ 5 13.11/12.45/11.81 4.16/3.99/3.73 3.16/3.13/3.17 10 10.28/9.31/8.45 3.43/3.21/2.98 3.00/2.91/2.84 20 6.76/5.63/4.73 2.56/2.27/2.04 2.65/2.49/2.32 50 2.98/2.45/1.89 1.58/1.39/1.18 1.89/1.77/1.61 5 30.6/28.76/27.1 30.6/28.76/27.1 1 10 26.86/25.12/23.85 26.86/25.12/23.85 1 20 10.02/9.68/8.34 10.02/9.68/8.34 1 50 8.36/7.15/5.98 8.36/7.15/5.98 1

表 C1 不同过渡电阻下保护动作情况

Table C1 Protection actions under different transition resistances

Table C2 Comparison of different methods

文献	$u_{L_{1.1}p_int}$ /kV	$du_{L_{1,l}p} / dt / (kV \cdot s^{-1})$	定值	动作情况
[10]	2.153/1.353/0.82	—	2.02kV	可能拒动
[8]	_	$4.33\!\times\!10^4\!/1.59\!\times\!10^4\!/1.07\!\times\!10^4$	$7.51 \times 10^4 kV/s$	正确动作