一种应用于直流微电网并网变换器的双电流反馈控制策略

支 娜,赵佳宝,明 旭

(西安理工大学 自动化与信息工程学院,陕西 西安 710048)

摘要:针对弱电网时谐振频率发生变化导致LCL型并网变换器稳定裕度降低的问题,提出一种应用于直流微 电网并网变换器的双电流反馈控制策略。根据变换器交直流两侧功率守恒以及传统下垂控制方程,建立直 流母线电压与变换器侧电流的二次函数关系,简化直流母线电压控制方式,减少控制器参数设计;在变换器 侧电流反馈控制内环加入并网电流反馈有源阻尼,分析其阻尼等效特性,提高弱电网下的谐振抑制效果。仿 真与实验结果表明该控制策略能够实现直流侧母线电压的稳定控制以及交流侧并网电流的谐波优化。

关键词:直流微电网;双向并网变换器;直流母线电压;下垂控制;有源阻尼 中图分类号:TM 73 文献标志码:A

DOI:10.16081/j.epae.202105016

0 引言

直流微电网是采用公共直流母线将分布式电 源、负荷、储能装置等有机结合在一起的小型发配电 系统,并通过双向并网变换器与交流母线相连,实现 与交流电网之间的功率交互^[1-3]。直流微电网多采 用分层控制^[4]实现网内的功率均衡,下垂控制因具 有自主均衡、即插即用等特点被广泛应用于分层控 制中底层接口变换器的控制^[5]。

直流微电网中存在负荷突变以及可再生能源输 出功率快速波动等大扰动现象,会对直流母线电压 稳定性造成影响,因此直流微电网接口并网变换器 控制既要能快速响应网内功率的变化,又要实现网 间功率的自主均衡与双向流动,同时要能够抑制 LCL滤波器的谐振问题。传统并网变换器的控制通 过在双环控制中加入直流侧母线电压的下垂控制实 现功率的自主均衡,该控制具有2个PI调节器,控制 参数设计较为复杂。

LCL滤波器因具有较好的高频谐波抑制能力而 被广泛应用于并网变换器结构,但其自身产生的谐 振现象会影响系统稳定运行,尤其是在弱电网条件 下谐振频率随电网阻抗发生偏移,降低了系统稳定 性。近年来国内外学者针对谐振问题提出了多种解 决方法。无源阻尼法通过在滤波电容支路串联或并 联电阻抑制谐振^[6],该方法方便有效,但增加了功 耗,降低了效率。文献[7]采用基于模型降阶的分裂

收稿日期:2021-01-28;修回日期:2021-03-15

基金项目:国家自然科学基金资助项目(52077176);国家自然 科学基金面上项目(51877175);陕西省重点研发计划项目 (2017ZDXM-GY-003)

Project supported by the National Natural Science Foundation of China (52077176), the General Program of National Natural Science Foundation of China (51877175) and the Key Research and Development Plan Program of Shaanxi Province(2017ZDXM-GY-003) 电容法大幅提高了系统的截止频率和带宽,但是该 方法依赖于精确的参数匹配,出现误差时调节分裂 电容值较为困难。加权电流法[8]通过采样逆变器侧 电流和网侧电流将其特定加权值作为反馈控制目 标,该方法对模型参数敏感,受电网阻抗变化影响较 大。另外,通过设计陷波器^[9]、超前滞后补偿器^[10]等 附加滤波器的方法能够实现谐振尖峰抑制,但模型 参数设计过程较为复杂。文献[11]在单逆变侧电流 反馈控制的基础上,对LCL滤波器和电流控制器参 数进行整体性设计以抑制谐振,但其未考虑弱电网 条件下谐振偏移的影响。基于状态变量反馈的有源 阻尼方法包括电容电流反馈[12-13]、电容电压反馈[14]、 并网电流反馈[15-17]以及全状态变量反馈[18]等,这类 方法抑制谐振效果显著。其中,电容电流反馈、电 容电压反馈以及全状态变量反馈等方法实现简单 但需额外增加传感器,提高了硬件成本;并网电流反 馈有源阻尼 GCFAD(Grid Current Feedback Active Damping)方法将反馈的并网电流经过控制器等效为 滤波电容两端的并联电阻来抑制谐振,其因无需添 加额外的传感器而受到广泛关注,但是该方法仅对 光伏逆变器进行控制,且其电流控制方式属于直接 进网电流控制,相比于间接进网电流控制,稳定性较 差且不利于功率开关管的过流保护[13,19]。

本文以应用于直流微电网的LCL型双向并网变 换器为研究对象,提出一种能够快速响应直流微电 网功率变化的双电流反馈控制策略。该控制策略对 传统下垂控制进行改进,建立变换器侧直接电流控 制算法实现功率的双向流动,简化直流母线电压控 制方式,并在变换器侧采用间接电流控制,在电感电 流反馈控制环中加入考虑延时的GCFAD有源阻尼 反馈,提高弱电网下的谐振抑制效果,降低并网电流 谐波含量。最后,搭建仿真及实验模型对该控制策 略进行验证。

1 改进下垂控制

直流微电网典型拓扑结构见附录中图A1,主要 包括可再生能源发电、储能、负载,直流母线通过并 网变换器与交流电网相连。

LCL滤波器较L型滤波器在滤波效果、成本和体积等方面都具有较大的优势,因此应用更为广泛。 LCL型并网变换器结构见附录中图A2。图中, L_g 为 电网电感; U_{de} 为直流母线电压; i_{de} 为直流侧电流; u_L 和 u_g 分别为变换器输出电压和交流电网电压; i_L 和 i_g 分别为变换器侧电流和并网电流。直流母线经过储能电容 C_{de} 、三相变换电路以及LCL滤波器接入电网;LCL滤波器由电感 L_1 、 L_2 和电容C组成。

为实现直流微电网中各微源间功率的自主均衡,下垂控制被广泛应用于直流微电网底层变换器控制中^[5]。基于直流母线电压的传统下垂控制方程为:

$$U_{\rm dc} = U_{\rm N} + k_{\rm dc} i_{\rm dc} \tag{1}$$

其中,U_N为直流母线电压额定值;k_{de}为下垂系数。

采用传统下垂控制的直流微电网并网变换器控制框图见图1(a)。可看出,变换器侧电流参考值*i*_{Lref}由下垂控制方程及电压调节器*G*_u(s)的输出得到。而直流母线电压的变化能直接反映直流微电网功率的变化,根据变换器输入、输出功率相等(假设所有开关均为理想开关并忽略功率损耗),建立如下关系式:

 $U_{\rm dc}i_{\rm dc} = \sqrt{3} U_{\rm ac}I_{\rm L} \tag{2}$

其中, U_{ac} 为三相交流线电压有效值; I_{L} 为变换器侧电流有效值。

将式(2)代人式(1),得出
$$I_{\rm L}$$
与 $U_{\rm dc}$ 的关系式为:
$$I_{\rm L} = \frac{U_{\rm dc}^2 - U_{\rm dc}U_{\rm N}}{\sqrt{3} k_{\star} U}$$
(3)

令 $k = \frac{1}{\sqrt{3} k_{dc} U_{ac}}$,可得 $I_{L} = U_{dc}$ 存在一定的二次

函数关系,其函数关系曲线见附录中图A3,功率传输方向以流向交流电网为正。

根据式(3)计算 i_{Lref} ,通过电流控制器 $G_i(s)$ 对反 馈电流进行调节,具体改进控制结构见图1(b)。

图1 并网变换器控制框图

Fig.1 Control block diagram of grid-connected converter

电流控制,省去了电压环PI调节器,减少了参数设计和调节过程,简化了控制结构,提升了电流响应速度。

2 双电流反馈控制

LCL滤波器的谐振现象会放大特定频率处谐波 幅值,易造成系统不稳定。为抑制LCL滤波器的谐振 问题,需在图1(b)电流控制环中加入谐振抑制环。

2.1 谐振产生原理

LCL滤波器在变换器中的等效电路见附录中图 A4,其s域等效控制结构框图见附录中图A5。

根据s域等效控制框图建立并网电流i_s到变换器输出电压u_r的传递函数:

$$G_{\rm g}(s) = \frac{i_{\rm g}(s)}{u_{\rm L}(s)} = \frac{1}{L_1(L_2 + L_{\rm g})Cs(s^2 + \omega_{\rm res}^2)}$$
(4)

其中, ω_{res}为谐振角频率, 表达式如式(5)所示。

$$\omega_{\rm res} = \sqrt{\frac{L_1 + L_2 + L_{\rm g}}{L_1 (L_2 + L_{\rm g})C}}$$
(5)

不同谐振频率 f_{res} 下 $G_g(s)$ 的伯德图见附录中图 A6。可以看出,滤波器参数变化时 $G_g(s)$ 始终存在谐 振尖峰,并在尖峰处相位穿越 –180°线,产生不稳定 极点,影响系统运行稳定性。

2.2 双电流反馈原理

图2为所提双电流反馈控制框图,即在变换器 交流侧电流控制环内侧加入有源阻尼反馈回路,图 中K_{PWM}为并网变换器等效增益。

图2 双电流反馈控制框图

Fig.2 Block diagram of dual current feedback control

图 2 中, 电流调节器 $G_i(s)$ 采用准比例谐振 PR (Proportional Resonant)调节器, 其传递函数为:

$$G_{i}(s) = K_{p} + \frac{2K_{r}\omega_{r}s}{s^{2} + 2\omega_{r}s + \omega_{0}^{2}}$$
(6)

其中, K_{μ} 、 K_{r} 分别为调节器比例系数和谐振增益; ω_{r} 、 ω_{0} 分别为其截止频率和基波角频率。

并网电流反馈有源阻尼控制器 $G_{\rm H}(s)^{[20]}$ 传递函数表示为:

$$G_{\rm H}(s) = -\frac{K_{\rm d}s}{s+\omega_{\rm d}} \tag{7}$$

其中,K_d为有源阻尼系数;ω_d为截止角频率。

 $G_{\rm H}(s)$ 反馈回路的等效虚拟阻抗如图 3(a)所示。 将 $G_{\rm H}(s)$ 的输出端移至 $1/(sL_1)$ 的输入端,并将 $G_{\rm H}(s)$ 的输入端移至 $1/(sL_1)$ 的输出端,即得到等效虚拟阻抗模型 Z_{eq} ,其等效电路如图 3(b)所示。

(b)等效阻抗模型

图3 等效虚拟阻抗

图中Z_{eq}的等效表达式为:

$$Z_{\rm eq} = -\frac{G_{\rm H}(s) K_{\rm PWM}}{s^2 L_2 C + 1}$$
(8)

将式(7)以及 $s = j\omega(\omega)$ 为频域中的自变量角频率)代人式(8),得到 $Z_{eq}(\omega)$ 的表达式为:

$$Z_{\rm eq}(\omega) = \frac{K_{\rm PWM} K_{\rm d}(\omega^2 + j\omega\omega_{\rm d})}{(\omega^2 L_2 C - 1)(\omega^2 + \omega_{\rm d}^2)}$$
(9)

 $Z_{eq}(\omega)$ 又可以表示为虚拟电阻 $R_{eq}(\omega)$ 与虚拟电 抗 $X_{eq}(\omega)$ 串联的形式,即:

$$Z_{\rm eq}(\omega) = R_{\rm eq}(\omega) + j X_{\rm eq}(\omega)$$
(10)

得到
$$R_{eq}(\boldsymbol{\omega})$$
与 $X_{eq}(\boldsymbol{\omega})$ 的表达式分别为:

$$\begin{cases} R_{eq}(\omega) = \frac{K_{PWM} K_{d} \omega^{2}}{(\omega^{2} L_{2} C - 1)(\omega^{2} + \omega_{d}^{2})} \\ X_{eq}(\omega) = \frac{K_{PWM} K_{d} \omega_{d} \omega}{(\omega^{2} L_{2} C - 1)(\omega^{2} + \omega_{d}^{2})} \end{cases}$$
(11)

根据式(11),绘制出 $R_{eq}(\omega)$ 与 $X_{eq}(\omega)$ 的频率特性曲线见图4。图中, f_s 为系统控制频率。从图中可见, $R_{eq}(\omega)$ 与 $X_{eq}(\omega)$ 存在相同的正负分界频率 f_0 。当

 $K_d > 0$ 时,在(0, f_0)范围内,电阻 $R_{eq}(\omega)$ 呈负阻性,电 抗 $X_{eq}(\omega)$ 呈容性;在($f_0, f_s/2$)范围内,电阻 $R_{eq}(\omega)$ 呈 正阻性,电抗 $X_{eq}(\omega)$ 呈感性。当 $K_d < 0$ 时,结果相反。

令式(11)分母等于0,可得正负分界频率点对 应的角频率ω,为:

$$\omega_1 = \sqrt{\frac{1}{(L_2 + L_g)C}} \tag{12}$$

对比式(12)、式(5)可知, ω_{res} 总是大于 ω_1 ,因此 当谐振频率随着电网电感 L_g 变化时,该正负分界点 也会随之改变,且始终位于谐振频率左侧,并不影响 有源阻尼特性。

2.3 控制延时对有源阻尼的影响

数字控制下的电流反馈过程需要考虑系统固 有的控制延时。图5为考虑控制延时的双电流反馈 控制框图,延时包括采样环节的一拍(一个控制周 期)计算延时 $G_a(s)$ 以及零阶保持器ZOH(Zero Order Holder)带来的延时 $G_a(s)$,二者表达式分别为:

$$G_{\rm d}(s) = \mathrm{e}^{-sT_{\rm s}} \tag{13}$$

$$G_{\rm h}(s) = \frac{1 - {\rm e}^{-sT_{\rm s}}}{sT_{\rm s}} \approx {\rm e}^{-\frac{sT_{\rm s}}{2}}$$
(14)

其中,T_s为控制周期。

图 5 考虑控制延时的双电流反馈控制框图

Fig.5 Block diagram of dual current feedback control considering control delay

根据式(15),绘制考虑延时情况下 $R_{eq}(\omega)$ 与 $X_{eq}(\omega)的频率特性曲线见附录中图 A7。其中,<math>f_R$ 为 虚拟电阻 $R_{eq}(\omega)$ 的正负频率分界点; f_{X1} 、 f_{X2} 为虚拟 电抗 $X_{eq}(\omega)$ 的正负频率分界点。从图中可见,等效 虚拟电阻 $R_{eq}(\omega)$ 与虚拟电抗 $X_{eq}(\omega)$ 在($f_0, f_s/2$)区间 具有幅值为0的现象,正负极性也随频率发生变化。 虚拟电阻 R_{eq} 是抑制谐振尖峰的主要因素,一旦

谐振频率 f_{res} 与 f_{R} 重合,有源阻尼将失去作用。令

 $R_{eq}(\omega)=0$,即 $g_{R}(\omega)=0$,可得 $f_{s}/6 \leq f_{R} < f_{s}/3$ 。因此,为 使谐振在较宽的频率变化范围内均能被良好抑制, 应尽量避免 $f_{R} = f_{res}$ 重合。

已知零阶保持器产生的延时可等效为半拍控制 延时,因此电流反馈回路共存在1.5拍控制延时。为 减小该延时对谐振抑制产生的不利影响,扩大 fres允 许变化范围,本文采用双采样模式,即系统控制频率 fs等于2倍的变换器开关频率fsw,在三角载波的波 峰、波谷处进行2次信号采样与装载,从而使系统总 控制延时为开关周期的75%^[11]。

根据图5可得变换器侧电流参考值 i_{Lref} 到 i_{L} 的开 环传递函数 $G_1(s)$ 的表达式为:

$$G_{1}(s) = \frac{K_{\text{PWM}}G_{i}(s) \left[s^{2}(L_{2}+L_{g})C+1\right]}{K_{\text{PWM}}G_{H}(s) + \frac{s^{3}L_{1}(L_{2}+L_{g})C+s(L_{1}+L_{2}+L_{g})}{G_{d}(s)G_{h}(s)}}(17)$$

在伯德图中开环对数幅频特性大于0的频段 范围内,将对数相频特性曲线自下而上穿过-180° 线称为正穿越(*N*,为正穿越次数);反之,将自上而 下穿过-180°线称为负穿越(*N*_为负穿越次数)。根 据奈奎斯特稳定判据,当右半*s*平面的开环极点数 等于2(*N*,-*N*_)时闭环系统稳定^[21]。

图 6 为 $G_1(s)$ 分别在 $K_d=2$ 以及 $K_d=-2$ 时的伯德 图。当 $K_d=2$ 时, $R_{eq}(\omega)$ 呈正阻性,此时 $G_1(s)$ 不存在 右半平面极点,且对数相频特性曲线在幅值大于 0 的范围内没有穿过 -180°线;当 $K_d=-2$ 时, $R_{eq}(\omega)$ 呈 负阻性,此时 $G_1(s)$ 存在 2 个右半平面极点,即开环 极点数为 2,且对数相频特性曲线在幅值大于 0 的范 围内仅存在 1 次正穿越,即 2 $(N_+ - N_-)=2$ 。可见, $R_{eq}(\omega)$ 在正负极性下,系统均能在一定频域内保持 稳定,且均能对谐振尖峰具有良好的抑制效果。

3 仿真分析

本文在MATLAB / Simulink 中搭建直流微电网 仿真模型,对所提策略的正确性进行验证,其简化结 构控制框图如图7所示。其中,u_{ee}为并网点电压;u_w

和 i_{pv} 分别为光伏阵列输出电压和电流; i_{dLref} 和 i_{qLref} 为 i_{Lref} 在dq坐标系下的分量。双向并网变换器采用上 文所提控制策略。光伏模块输出采用最大功率点跟 踪(MPPT)控制,输出功率 P_{pv} =10 kW。负载功率 P_{Load} 初始值为6 kW。当 P_{Pv} > P_{Load} 时,并网变换器工 作在逆变状态,当 P_{Pv} < P_{Load} 时,并网变换器工作在整 流状态。仿真模型其他各部分参数见附录中表A1。

在仿真0.5 s时改变负载功率P_{Load},使其从初始的 6 kW 增至14 kW,见图8(a)。由于光伏输出功率不 足,母线电压跌落,并网变换器由逆变状态转变为整 流状态。图8(b)为下垂控制改进前、后U_{de}变化对比, 可见,负载功率发生变化时,下垂控制改进前后的U_{de} 变化效果基本一致,达到稳态值所用时间相同。

为进一步验证改进下垂控制的控制效果,在直流母线电压400 V 时加入负载脉冲扰动,令负载功 率突增5 kW 后恢复为初始值,直流母线电压波形变 化见附录中图A8(b)。可见,改进下垂控制的U_{de}变 化情况与改进前一致,证明了所提策略的有效性。

图9为单变换器侧电流反馈控制时的并网电流 仿真波形以及2种工作模式下的A相电流总谐波畸 变率 λ_{THD} 分析结果。从图中可看出,三相并网电流 在逆变或整流状态下波形效果较差,在特定频率下 其谐波幅值达到基频幅值的3.5%,波形畸变率均在 11%以上。图10为不同采样方式下的双电流反馈 并网电流波形(L_g =0),对比图9可知,在单倍采样模 式下谐振抑制效果仍不明显,而在双采样模式下谐 波最高幅值降至基频幅值的0.5%以内,波形畸变率 保持在2.5%左右,可见延时造成的谐振抑制效果不 明显问题得到显著改善,说明双采样模式能减小延

Fig.9 Grid-connected current waveforms with current feedback control at single converter side

时对谐振抑制的影响,进而证明了所提策略能够可靠 减小并网电流谐波畸变率,有效抑制谐振现象。

考虑弱电网条件下电网阻抗呈感性,负荷波动 会引起谐振频率点偏移。不同电网电感下采用所提 控制策略的并网电流波形见附录中图 A9,可以看出 电流波形均较为平滑。结合图 10 仿真波形可知,电 网电感在 0~2 mH 范围内发生波动时谐振抑制效果 良好,系统能够保持稳定运行。

4 实验验证

为验证所提策略的有效性,基于信号控制器 TMS320F28335和Plexim公司的RT-box搭建附录中 图A7所示的直流微电网架构,实验平台见附录中图 A10,实验参数与附录中表A1一致。

图 11 为负载功率 P_{Load} 由 6 kW 增加至 14 kW 时 的 U_{de} 实验波形。对比 2 种下垂控制策略下的直流 母线电压变化情况可知,在负载功率变化时,直流母 线电压均能快速达到稳态值,且控制效果基本相同, 从而证明了所提改进下垂控制策略能够较好地替代 传统下垂控制,简化了参数设计过程。

单变换器交流侧电流反馈控制下的并网电流实验波形如图12(a)所示。可见,电流波形在2种工作状态下均存在大量谐波,波形出现明显振荡且畸变

严重。图12(b)为双电流反馈控制下的并网电流实验波形,相较于图12(a),并网电流实验波形得到较大改善,谐波畸变减少,波形呈现平稳运行。

Fig.12 Experimental waveforms of grid-connected current

不同电网电感的并网电流实验波形见附录中图 A11。可见,当电网电感分别为1mH和2mH时,并 网电流波形仍保持较好状态,有源阻尼效果显著,证 明了该策略在电网电感变化时具有一定的鲁棒性。

5 结论

本文基于直流微电网LCL型并网变换器传统双 闭环控制,提出一种改进下垂控制策略以简化直流 母线电压控制参数设计,采用变换器侧电流反馈控 制并将其加入并网电流有源阻尼反馈来抑制谐振, 理论分析了其有效阻尼特性以及延时产生的影响。 仿真与实验结果表明,改进下垂控制能够快速响应 直流母线电压的变化,与传统下垂控制相比,省去了 电压环,从而简化了设计;同时,引入网侧电流反馈 有源阻尼方法能够降低弱电网下并网电流的谐波含 量,在无需额外增加传感器的情况下有效抑制谐振, 提升了直流微电网的并网特性。

附录见本刊网络版(http://www.epae.cn)。

参考文献:

- DRAGIČEVIĆ T, LU X N, VASQUEZ J C, et al. DC microgrids - part I : a review of control strategies and stabilization techniques[J]. IEEE Transactions on Power Electronics, 2016, 31(7):4876-4891.
- [2]李霞林,郭力,王成山,等. 直流微电网关键技术研究综述[J]. 中国电机工程学报,2016,36(1):2-17.
 LI Xialin, GUO Li, WANG Chengshan, et al. Key technologies of DC microgrids: an overview[J]. Proceedings of the CSEE, 2016,36(1):2-17.
- [3] 张辉,闫海明,支娜,等. 基于母线电压微分前馈的直流微电网 并网变换器控制策略[J]. 电力系统自动化,2019,43(15): 166-171.

ZHANG Hui, YAN Haiming, ZHI Na, et al. Control strategy of grid-connected converter in DC microgrid based on differential feedforward of bus voltage [J]. Automation of Electric Power Systems, 2019, 43(15): 166-171.

- [4] 孟明,陈世超,卢玉舟,等. 基于功率分层的直流微电网协调控制策略[J]. 电力自动化设备,2017,37(4):30-37.
 MENG Ming, CHEN Shichao, LU Yuzhou, et al. Coordinated control based on power hierarchy for DC microgrid[J]. Electric Power Automation Equipment,2017,37(4):30-37.
- [5] 郭力,冯怿彬,李霞林,等. 直流微电网稳定性分析及阻尼控制 方法研究[J]. 中国电机工程学报,2016,36(4):927-936.
 GUO Li, FENG Yibin, LI Xialin, et al. Stability analysis and research of active damping method for DC microgrids[J]. Proceedings of the CSEE,2016,36(4):927-936.
- [6] POPESCU M, BITOLEANU A, PREDA A. A new design method of an LCL filter applied in active DC-traction substations
 [J]. IEEE Transactions on Industry Applications, 2018, 54(4): 3497-3507.
- [7] 庄超,叶永强,赵强松,等. 基于分裂电容法的LCL并网逆变器 控制策略分析与改进[J]. 电工技术学报,2015,30(16):85-93. ZHUANG Chao,YE Yongqiang,ZHAO Qiangsong,et al. Analysis and improvement of the control strategy of LCL grid-connected inverter based on split-capacitor[J]. Transactions of China Electrotechnical Society,2015,30(16):85-93.
- [8] 孙建军,王毅,杨泽洲,等.考虑电压前馈影响的LCL并网逆 变器改进WACC加权系数计算方法[J].中国电机工程学报, 2018,38(17):5158-5166,5313.
 SUN Jianjun,WANG Yi,YANG Zezhou, et al. Improved WACC weighted coefficient method for LCL grid-connected inverter considering the influence of voltage feedforward [J]. Proceedings of the CSEE,2018,38(17):5158-5166,5313.
- [9] YAO W L,YANG Y H,ZHANG X B,et al. Design and analysis of robust active damping for LCL filters using digital notch filters[J]. IEEE Transactions on Power Electronics, 2017,32(3):2360-2375.
- [10] PEÑA-ALZOLA R, LISERRE M, BLAABJERG F, et al. Systematic design of the lead-lag network method for active damping in LCL-filter based three phase converters [J]. IEEE Transactions on Industrial Informatics, 2014, 10(1):43-52.
- [11] 许津铭,季林,葛小伟,等. 计及逆变器侧电流反馈影响的 LCL 滤波器参数优化设计[J]. 中国电机工程学报,2016,36 (17):4656-4664.

XU Jinming, JI Lin, GE Xiaowei, et al. LCL-filter optimization design with consideration of inverter-side current feedback control impacts [J]. Proceedings of the CSEE, 2016, 36(17): 4656-4664.

[12] 华铤,林桦,肖建杰,等.一种扩展LCL型并网逆变器有效阻 尼区的超前补偿方法[J].电力自动化设备,2020,40(9): 197-203.

HUA Ting, LIN Hua, XIAO Jianjie, et al. Lead compensation method for extending valid damping region of LCL-type gridconnected inverter[J]. Electric Power Automation Equipment, 2020,40(9):197-203.

[13] 郑征,黄旭,杨明,等. 弱电网下逆变侧电流反馈的并网逆变器
 稳定性分析及优化[J]. 电力系统保护与控制,2019,47(19):
 31-37.

ZHENG Zheng, HUANG Xu, YANG Ming, et al. Stability analysis and improvement for LCL filter grid-connected inverter using inverter-side current feedback[J]. Power System Protection and Control, 2019, 47(19):31-37.

- [14] 陈新,韦徵,胡雪峰,等. 三相并网逆变器 LCL滤波器的研究及 新型有源阻尼控制[J]. 电工技术学报,2014,29(6):71-79.
 CHEN Xin, WEI Zheng, HU Xuefeng, et al. Research on LCL filter in three-phase grid-connected inverter and novel active damping control strategy[J]. Transactions of China Electrotechnical Society,2014,29(6):71-79.
- [15] 耿乙文,齐亚文,董文明,等.一种改进型并网电流反馈有源阻 尼方法[J].中国电机工程学报,2018,38(18):5557-5567.
 GENG Yiwen,QI Yawen,DONG Wenming, et al. An active damping method with improved grid current feedback[J]. Proceedings of the CSEE,2018,38(18):5557-5567.
- [16] ZHOU X P,ZHOU L M,CHEN Y D,et al. Robust gridcurrent-feedback resonance suppression method for LCL-type grid-connected inverter connected to weak grid[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018,6(4):2126-2137.
- [17] 王祺,秦文萍,张宇,等. 基于附加单位延时反馈的LCL型并网

变换器鲁棒电流控制策略[J]. 电力自动化设备,2020,40(9): 203-215.

WANG Qi, QIN Wenping, ZHANG Yu, et al. Robust current control strategy for LCL-type grid-connected converter based on additional unit time-delay feedback[J]. Electric Power Automation Equipment, 2020, 40(9): 203-215.

- [18] BUSADA C A,GOMEZ J S,SOLSONA J A. Full-state feedback equivalent controller for active damping in \$LCL \$-filtered grid-connected inverters using a reduced number of sensors [J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 5993-6002.
- [19] 王要强,吴凤江,孙力,等.带LCL输出滤波器的并网逆变器控制策略研究[J].中国电机工程学报,2011,31(12):34-39.
 WANG Yaoqiang,WU Fengjiang,SUN Li,et al. Control strategy for grid-connected inverter with an LCL output filter[J]. Proceedings of the CSEE,2011,31(12):34-39.
- [20] XU J M,XIE S J,TANG T. Active damping-based control for grid-connected \$LCL\$-filtered inverter with injected grid current feedback only [J]. IEEE Transactions on Industrial Electronics, 2014, 61(9):4746-4758.
- [21] 王孝武,方敏,葛锁良. 自动控制理论[M]. 北京:机械工业出版社,2009:200-201.

作者简介:

支 娜(1976—),女,陕西西安人,副 教授,博士,主要研究方向为新能源发电及 微电网控制(E-mail:zhina@xaut.edu.cn); 赵佳宝(1995—),男,河南洛阳人,硕士 研究生,主要研究方向为直流微电网并网变 换器控制(E-mail:jiabao_xaut@outlook.com); 明 旭(1998—),女,陕西咸阳人,硕 士研究生,主要研究方向为直流微电网协调

控制(E-mail:mingxu_xaut@outlook.com)。 (编辑 王锦秀)

Dual current feedback control strategy for DC microgrid grid-connected converter ZHI Na,ZHAO Jiabao,MING Xu

(School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China)

Abstract: Aiming at the problem of stability margin reduction of LCL type grid-connected converter caused by variation of resonant frequency in weak power grid, a dual current feedback control strategy for DC microgrid grid-connected converter is proposed. According to the power conservation at both AC and DC sides of the converter and the traditional droop control equation, the quadratic function relationship between DC bus voltage and converter side current is established to simplify the control mode of DC bus voltage and reduce the parameter design of controller. The active damping of grid-connected current feedback is added into the inner loop of current feedback control at converter side, and its damping equivalent characteristics are analyzed to improve the resonance suppression effect in weak power grid. The simulative and experimental results show that the proposed control strategy can realize stability control of bus voltage at DC side and the harmonic optimization of grid-connected current at AC side.

Key words: DC microgrid; bidirectional grid-connected converter; DC bus voltage; droop control; active damping

图 A1 直流微电网拓扑结构图

Fig.A1 Topological structure of DC microgrid

Fig.A3 Relationship curve between $I_{\rm L}$ and $U_{\rm dc}$

图 A4 LCL 滤波器等效电路

Fig.A4 Equivalent circuit of LCL converter

图 A5 s 域等效控制框图

Fig.A5 Equivalent control block diagram in s-domain

Fig.A6 Bode diagram of $G_{\rm g}(s)$ under different values of $f_{\rm res}$

图 A7 考虑控制延时的 $R_{eq}(\omega)$ 与 $X_{eq}(\omega)$ 频率特性曲线

Fig.A7 Frequency characteristic curves of $R_{eq}(\omega)$ and $X_{eq}(\omega)$ considering control delay

表 Al 伤具模型控制参数

Table A1	Control	parameters	of sim	ulation	model

I I I I I I I I I I I I I I I I I I I							
参数	数值	参数	数值				
交流电网电压 ug/V	110	滤波电感 L ₂ /mH	1.6				
变换器额定功率/kW	5	滤波电容 C/µF	10				
直流母线电容 Cdc/µF	3200	谐振增益 Kr	12				
直流母线电压 Udd/V	380~420	比例系数 K _p	6				
下垂系数 k _{dc}	1.6	有源阻尼系数 K _d	2.4				
截止角频率 $\omega_d/(rad \cdot s^{-1})$	16 000	开关频率fsw/kHz	15				
直流母线电压额定值 U _N /V	400	基波角频率 ω_0	314				
滤波电感 L _l /mH	3.3						

图 A8 脉冲扰动下 U_{dc} 波形对比

图 A9 电网电感变化时并网电流

Fig.A9 Grid-connected current when different grid inductance

图 A10 系统实验平台 Fig.A10 Experimental platform of system

Fig.A11 Experimental waveforms of grid-connected current when different grid inductance