多端口直流断路器可靠性评估模型及其应用

王天霖¹,杨墨缘²,高 崇¹,曹华珍¹,吴亚雄¹,张 真²,欧阳森² (1. 广东电网有限责任公司电网规划研究中心,广东 广州 510030;2. 华南理工大学 电力学院,广东 广州 510640)

摘要:多端口直流断路器(MTCB)是未来实现多端换流站联络及故障快速隔离的核心设备,其可靠性直接影响多端直流配电网的可靠性水平。首先分析了MTCB拓扑结构及工作原理。然后以珠海"互联网+"示范工程中应用的三端口混合式直流断路器为例,基于工程可靠性原理并考虑器件冗余建立MTCB可靠性评估模型。然后分析了MTCB对多端直流配电网可靠性的影响。最后基于唐家湾三端直流配电网结构进行算例分析,计算了MTCB在不同设计模式、冗余分析下的可靠性情况,进行了MTCB对多端直流配电网可靠性的影响 分析及灵敏度分析,验证了所提模型的正确性和有效性。

关键词:多端口;直流断路器;直流配电网;可靠性评估;冗余分析 中图分类号:TM 561 文献标志码:A

DOI:10.16081/j.epae.202108026

0 引言

相较传统交流配电网,直流配电网具有供电容 量大、电能质量高、便于分布式能源接入等优势,是 未来配电网的主要发展形态^[1-2]。其中,可靠性作为 直流配电网从示范化走向工程应用化的主要制约因 素而备受业界和学术界关注。

目前围绕直流配电网可靠性的研究较为匮乏。 文献[3]初步对直流配电设备进行建模分析,认为直 流断路器和直流变压器的高故障率是制约直流配电 网可靠性水平的主要因素。文献[4]研究了器件冗 余水平对直流配电网可靠性的影响,认为设备级冗 余比器件级冗余更能有效地提高系统的可靠性。文 献[5]基于马尔科夫模型对直流断路器可靠性进行 建模分析。文献[6]建立了详细的模块化多电平换 流器可靠性模型,分析了元件冗余及其冗余度、子模 块备用策略对其可靠性的影响。文献[7]建立了详细 的电力电子变压器可靠性模型,分析了其对直流配 电网可靠性的影响。然而,上述文献均未涉及关于 多端口直流断路器(MTCB)可靠性建模方面的研究。

MTCB作为多端直流配电网联接及故障快速隔 离的核心设备,其可靠性对于整个直流配电网可靠 性具有重要意义。目前围绕MTCB的研究主要侧重于 拓扑结构、顺序控制策略和开断控制策略等方面^[8-10], 尚缺乏基于器件电路结构的MTCB可靠性建模研 究,也未有将其纳入多端直流配电网可靠性评估的 研究。因此,亟需结合MTCB拓扑结构,建立其可靠

收稿日期:2021-01-08;修回日期:2021-06-29

基金项目:国家自然科学基金资助项目(51677073);中国南方 电网公司科技项目(GDKJXM20173253)

Project supported by the National Natural Science Foundation of China(51677073) and the Science and Technical Projects of China Southern Power Grid(GDKJXM20173253) 性模型,并将其纳入多端直流配电网可靠性评估中。

综上,本文分析了MTCB的工作原理,并以工程 实用性较高的多端口混合直流断路器可靠性为建模 对象,基于 k/n(G)理论建立了考虑电力电子器件冗 余的多端口混合式直流断路器可靠性评估模型。其 中,分别建立了整体设计和独立设计的多端口混合 直流断路器模型,研究了考虑冗余设计下的设备故 障率计算方法。并将建立的MTCB可靠性模型纳入 多端直流配电网可靠性评估中,重点分析了MTCB 不同设计模式、不同冗余分析下对多端直流系统可 靠性的影响,并对比了不同场景下多端直流系统与 多端交流系统的可靠性评估水平。

1 MTCB拓扑结构及工作原理

目前,在直流配电网示范工程中,MTCB拓扑结构主要包括传统的独立型结构和考虑经济因素的整体型结构2类,如图1所示^[1011]。工程中根据直流配

电网多端互联情况选择不同端口数直流断路器。并 根据直流断路器中关键开关器件不同,将其分为机 械式、全固态式、混合式3类,如附录A表A1所示。

传统的独立型结构 MTCB 通过若干独立运行的 两端口直流断路器(2-TCB)联接而成,如图1(a)所 示,其运行原理与高压直流输电中的2-TCB一致,不 再赘述,此处主要介绍整体型结构 MTCB 的运行原 理。如图1(b)所示,任意1条直流线路通过 MTCB 中的2条载流支路分别与相邻的2条直流线路相连, 用于承载正常电流;任意1条直流线路均与 MTCB中 的转移支路相连,用于承载并切断故障电流;每条转 移支路均与吸能支路并联,用于吸收故障线路中储 存的能量,限制转移支路动作时的过电压。

考虑到混合式直流断路器结合了全固态式和机 械式直流断路器的技术经济综合优势,当前混合式 直流断路器是工程示范的主要应用对象。以唐家湾 三端直流配电网工程成功应用的±10 kV三端口混 合式直流断路器为例进一步分析 MTCB 的运行原 理,其拓扑结构如附录A图A1所示^[10]。图中三端口 (S₁—S₃)混合式直流断路器由3条主支路(P₁—P₃) 构成,P₁、P₂均是1个完整的耦合负压型混合式直流 断路器,而P₃仅由1条载流支路(P₃₁)组成。该三端 口混合式直流断路器的3条载流支路(P₁₁—P₃₁)各 含1个快速机械开关(B₁—B₃),2条转移支路(P₁₂、 P₂₂)各含1个双向电力电子开关(PEB₁、PEB₂)和1个 辅助电路(耦合负压电路CNP₁、CNP₂),2条吸能支路 (P₁₃、P₂₃)各含1套金属氧化物避雷器(M₁、M₂)。其合 闸、分闸过程的工作原理如下。

1)合闸过程。三端口混合式直流断路器的支路 启动顺序为先合 P₁或 P₂,后合 P₃。以先合 P₁为例,首 先导通 PEB₁,若直流系统无故障,则闭合 B₁,随后关 断 PEB₁,同时由 B₁导通稳态电流,P₁支路启动成功; 若直流系统存在故障,则迅速关断 PEB₁,B₁不动作。 然后启动 P₂支路,过程与 P₁支路一致。最后关合 B₃, B₃导通稳态电流,P₃支路启动成功。

2)分闸过程。以单端短路故障为例,当系统正 常运行时,由快速机械开关所在的支路承载正常工 作电流;当 S_2 所连线路发生故障后,断开 B_2 和 B_3 ,同 时令 PEB₂导通,则 B_2 和 B_3 中的故障电流会转移至 PEB₂上;PEB₂关断瞬间,故障线路中储存的能量将 被耗能元件 M_2 吸收,并将PEB₂两端的过电压限制在 安全范围以内。

2 MTCB可靠性评估模型

本节首先以附录 A 图 A1 所示三端口混合式直 流断路器(以下简称三端口直流断路器(3-TCB))为 例建立整体型结构 MTCB的可靠性评估模型,然后 为方便对比分析,进一步建立独立型结构 MTCB的 可靠性模型。

2.1 整体型结构可靠性评估模型

根据附录A图A1所示的唐家湾3-TCB的拓扑结构及运行原理,基于3-TCB元件故障对各端口(S₁—S₃)连接线路所带负荷可靠性的影响,建立图2所示3-TCB可靠性评估模型。

图2 唐家湾3-TCB可靠性评估模型

Fig.2 Reliability evaluation model of Tangjiawan 3-TCB

基于整体型结构特点,该3-TCB可靠性模型由 载流支路(P₁₁—P₃₁)、转移支路(P₁₂、P₂₂)和吸能支路 (P₁₃、P₂₃)组合而成,其中载流支路由快速机械开关 构成,转移支路由双向电力电子开关和耦合负压电 路构成,吸能支路由金属氧化物避雷器构成。除此 之外,其安全可靠运行还与控制保护系统(PCS)有 关。因此,整体型结构3-TCB可靠性评估模型组合 关系如图3所示。

2.1.1 两端口耦合负压型直流断路器可靠性评估 模型

首先对两端口耦合负压型直流断路器(以下 简称为2-TCB)模块进行可靠性评估建模。如前文 所述,载流支路和吸能支路分别含1个快速机械开 关(B)和1套金属氧化物避雷器(M),转移支路由 k 个二极管桥IGBT子模块(SM₁—SM_k)和1个耦合负 压电路(CNP)组合,其中k个二极管桥IGBT子模块 共同构成电力电子开关(PEB),耦合负压电路由电 感(L)、电容(C)、晶闸管(T)和二极管(D)组成,如附 录 A图 A2 所示。上述任意元件故障,该2-TCB 模块 均会故障,因此其可靠性评估模型如图4 所示。

— B — PEB — CNP — M
$- \underbrace{\mathrm{SM}_1}_{} + \underbrace{\mathrm{SM}_2}_{} - \cdots - \underbrace{\mathrm{SM}_k}_{} - \underbrace{- \underbrace{L_1}_{} + \underbrace{L_2}_{} + \underbrace{C_2}_{} + \underbrace{\mathrm{T}}_{} + \underbrace{\mathrm{D}_6}_{} + \underbrace{\mathrm{SM}_k}_{} - \underbrace{- \underbrace{L_1}_{} + \underbrace{L_2}_{} + \underbrace{C_2}_{} + \underbrace{\mathrm{T}}_{} + \underbrace{\mathrm{D}_6}_{} + \underbrace{\mathrm{SM}_k}_{} - \underbrace{- \underbrace{\mathrm{SM}_k}_{} - \underbrace{- \underbrace{L_1}_{} + \underbrace{L_2}_{} + \underbrace{C_2}_{} + \underbrace{\mathrm{T}}_{} + \underbrace{\mathrm{D}_6}_{} + \underbrace{\mathrm{SM}_k}_{} - \underbrace{- \underbrace{- \underbrace{\mathrm{SM}_k}_{} - \underbrace{- \underbrace{- \underbrace{\mathrm{SM}_k}_{} - \underbrace{- \underbrace{- \underbrace{\mathrm{SM}_k}_{} - \underbrace{- \underbrace{- \underbrace{- \operatorname{SM}_k}_{} - \underbrace{- \underbrace{- \underbrace{- \operatorname{SM}_k}_{} - \underbrace{- \underbrace{- \underbrace{- \operatorname{SM}_k}_{} - \underbrace{- \underbrace{- \underbrace{- \operatorname{SM}_$
$-\overline{\text{IGBT}}, \overline{\text{D}_1}, \overline{\text{D}_2}, \overline{\text{D}_3}, \overline{\text{D}_4}, \overline{\text{D}_5}, \overline{\text{C}_1}$

图4 2-TCB模块可靠性评估模型

Fig.4 Reliability evaluation model of 2-TCB module

根据可靠性原理, 2-TCB 模块的可靠度函数 R_{2-TCB}(t)为:

$$R_{2-\text{TCB}}(t) = R_{\text{B}}(t)R_{\text{PEB}}(t)R_{\text{CNP}}(t)R_{\text{M}}(t)$$
(1)

式中: $R_{\rm B}(t)$ 、 $R_{\rm PEB}(t)$ 、 $R_{\rm CNP}(t)$ 、 $R_{\rm M}(t)$ 分别为快速机械 开关、电力电子开关、耦合负压电路、金属氧化物避 雷器的可靠度函数;t为时间。

2.1.2 PEB可靠性评估模型

二极管桥 IGBT 子模块通过缓冲保护支路实现子模块之间的动、静态均压及过电压保护,以SM₁为例,其由动态均压电阻(R_1)、动态均压电容(C_1)、静态均压电阻(R_2)以及过压保护可变电阻(R_v)构成。考虑电阻元件的高可靠性,这里主要计及电容故障的影响,二极管桥 IGBT 子模块可靠度函数 $R_{SM}(t)$ 为:

$$R_{\rm SM}(t) = R_{\rm IGBT}(t) R_{\rm D}^5(t) R_C(t)$$
⁽²⁾

式中: $R_{IGBT}(t)$ 、 $R_{D}(t)$ 、 $R_{c}(t)$ 分别为IGBT、二极管和电容的可靠度函数。

二极管桥IGBT子模块的数量 k 由断路器两侧 的最大压差、最大断流能力和单个子模块的承压能 力、断流能力共同决定^[5],即:

$$k = d \frac{U_{\text{max}}}{U_0} \frac{I_{\text{max}}}{I_0} \tag{3}$$

式中:d为方向系数,直流断路器考虑双向断流能力,即 $d=2;U_{max}$ 、 I_{max} 分别为断路器的两侧电压差最大值和最大断流能力; U_0 、 I_0 分别为单个IGBT的载压能力和断流能力。

假设转移支路的电力电子开关在考虑元件冗余 后由 n 个二极管桥 IGBT 子模块构成,则当有 n-k 个 子模块故障时,电力电子开关故障。根据 k/n(G)理 论建立考虑元件冗余的电力电子开关可靠度函数 R_{PFR}(t),即:

$$R_{\text{PEB}}(t) = \sum_{i=k}^{n} C_{n}^{i} R_{\text{SM}}^{i}(t) (1 - R_{\text{SM}}(t))^{n-i}$$
(4)

2.1.3 耦合负压电路可靠性评估模型

耦合负压电路的可靠度函数 $R_{CNP}(t)$ 为:

$$R_{\rm CNP}(t) = R_L^2(t) R_C(t) R_{\rm T}(t) R_{\rm D}(t)$$
⁽⁵⁾

式中: $R_L(t)$ 、 $R_T(t)$ 分别为耦合负压回路电感、晶闸管的可靠度函数。

2.1.4 控制保护系统可靠性评估模型

另外,控制保护系统的可靠性评估模型包括组

屏设备(GS)和本体设备(BE)2个部分,其中组屏设 备由直流断路器控制主机(BCU)、直流断路器控 制子机(FEU)、本体过流保护(OCP)、智能连锁装置 (IKD)组成;本体设备由机械开关控制模块(SCU)、 耦合负压控制模块(NCU)、电力电子开关控制模块 (ICU)、电源驱动模块(PD)、电子式电流互感器 (ECT)组成。控制保护系统可靠性评估模型如图5 所示。

图5 控制保护系统可靠性评估模型

Fig.5 Reliability evaluation model of protection control system

控制保护系统可靠性评估模型包括不考虑备用 和考虑备用2种形式,其可靠度函数*R*_{PCS}(*t*)为:

$$R_{\rm PCS}(t) = \begin{cases} R'_{\rm PCS}(t) & 不考虑备用 \\ R''_{\rm PCS}(t) & 考虑备用 \end{cases}$$
(6)

式中: R'_{PCS}(t)、R''_{PCS}(t)分别为不考虑和考虑备用时的 控制保护系统可靠度函数。

1)不考虑备用。

不考虑备用时,控制保护系统的可靠度函数 R'_{PCS}(t)为:

$$R'_{\rm PCS}(t) = R_{\rm GS}(t)R_{\rm BE}(t) \tag{7}$$

式中: $R_{\rm GS}(t)$ 、 $R_{\rm BE}(t)$ 分别为组屏设备和本体设备的可 靠度函数,其表达式见式(8)。

$$\begin{cases} R_{\rm GS}(t) = R_{\rm BCU}(t)R_{\rm FEU}(t)R_{\rm OCP}(t)R_{\rm IKD}(t) \\ R_{\rm BE}(t) = R_{\rm SCU}(t)R_{\rm NCU}(t)R_{\rm ICU}(t)R_{\rm PD}(t)R_{\rm ECT}(t) \end{cases}$$
(8)

式中: R_{BCU}(t)、R_{FEU}(t)、R_{OCP}(t)、R_{IKD}(t)分别为直流断路器控制主机、直流断路器控制子机、本体过流保护和智能连锁装置的可靠度函数; R_{SCU}(t)、R_{NCU}(t)、 R_{ICU}(t)、R_{PD}(t)、R_{ECT}(t)分别为机械开关控制模块、耦合负压控制模块、电力电子开关控制模块、电源驱动 模块和电子式电流互感器的可靠度函数。

2)考虑备用。

考虑到多端直流配电网对可靠性要求高,在实际工程中,控制保护系统应设有一套备用系统,即运行中的系统发生故障时,备用系统自动投入运行。 根据 k/n(G)理论建立考虑备用的控制保护系统可靠度函数 Rⁿ_{Pes}(t),即:

$$R_{\text{PCS}}''(t) = \sum_{j=1}^{2} C_{2}^{j} \left(R_{\text{PCS}}'(t) \right)^{j} \left(1 - R_{\text{PCS}}'(t) \right)^{2-j}$$
(9)

2.1.5 直流断路器各端口可靠性评估模型

根据上述内容,可得到所述 3-TCB 相对端口 $S_1 - S_3$ 的可靠度函数 $R_{s1}(t) - R_{s3}(t)$,即:

$$\begin{cases} R_{s1}(t) = R_{B}(t)R_{2-TCB}(t)R_{PCS}(t) \\ R_{s2}(t) = R_{B}(t)R_{2-TCB}(t)R_{PCS}(t) \\ R_{s3}(t) = R_{B}^{2}(t) \left[1 - \left(1 - R_{PEB}(t)R_{CNP}(t)\right)^{2} \right] R_{PCS}(t) \end{cases}$$
(10)

当所有元件寿命服从指数分布且故障率为常数 λ_{η} (其中 $\eta \in \Lambda, \Lambda = \{B, M, L, C, T, \dots\}$ 代表各元件的类 型)时,各元件的可靠度函数为 $e^{-\lambda_{\eta}t}$ 。将各元件的可 靠度函数代入式(1)、(2)、(4)—(10),即得到各模块 可靠度函数。根据可靠度R(t)和故障率 λ 的关系, 如附录A图A3所示,进一步通过式(11)即可求得各 模块故障率。

$$\lambda = \frac{1}{R(t)} f(t) = \frac{1}{R(t)} \frac{\mathrm{d}Q(t)}{\mathrm{d}t} = \frac{1}{R(t)} \frac{\mathrm{d}(1 - R(t))}{\mathrm{d}t} = \frac{1}{R(t)} \left(-\frac{\mathrm{d}R(t)}{\mathrm{d}t}\right) \quad (11)$$

式中: *f*(*t*)为指数概率密度函数; *R*(*t*)为当前时间的 残存概率, 即本文中的可靠度; *Q*(*t*)为当前时间下发 生故障的概率。

得到各模块故障率后,进一步基于可靠性串联 原理得到所述 3-TCB 相对于端口 $S_1 - S_3$ 的故障率 $\lambda_{s_1} - \lambda_{s_3}$ 为:

$$\begin{cases} \lambda_{s1} = \lambda_{s2} = \lambda_{B} + \lambda_{2-TCB} + \lambda_{PCS} \\ \lambda_{s3} = 2\lambda_{B} + \frac{2(\lambda_{PEB} + \lambda_{CNP})\left[e^{-(\lambda_{PEB} + \lambda_{CNP})t} - 1\right]}{e^{-(\lambda_{PEB} + \lambda_{CNP})t} - 2} + \frac{2\lambda_{M}\left(e^{-\lambda_{M}t} - 1\right)}{e^{-\lambda_{M}t} - 2} + \lambda_{PCS} \end{cases}$$
(12)

式中: λ_{B} 、 λ_{2-TCB} 、 λ_{PCS} 、 λ_{PEB} 、 λ_{CNP} 、 λ_{M} 分别为快速机械开 关、2-TCB模块、控制保护系统、电力电子开关、耦合 负压电路、金属氧化物避雷器的故障率。

对于2-TCB模块故障率 λ_{2-TCB} 及其所含电力电子开关、耦合负压电路的故障率 λ_{PFB} 、 λ_{CNP} 有:

$$\begin{cases} \lambda_{2-\text{TCB}} = \lambda_{\text{B}} + \lambda_{\text{PEB}} + \lambda_{\text{CNP}} + \lambda_{\text{M}} \\ \lambda_{\text{PEB}} = \frac{1}{R_{\text{PEB}}(t)} \left(-\frac{\mathrm{d}R_{\text{PEB}}(t)}{\mathrm{d}t} \right) \\ \lambda_{\text{CNP}} = 2\lambda_{L} + \lambda_{C} + \lambda_{T} + \lambda_{D} \end{cases}$$
(13)

式中: λ_L 、 λ_c 、 λ_T 、 λ_D 分别为耦合负压回路电感、电容、 晶闸管和二极管的故障率。

对于控制保护系统故障率 λ_{PCS} 有:

$$\lambda_{\text{PCS}} = \frac{1}{R_{\text{PCS}}(t)} \left(-\frac{\mathrm{d}R_{\text{PCS}}(t)}{\mathrm{d}t} \right) = \begin{cases} \frac{1}{R'_{\text{PCS}}(t)} \left(-\frac{\mathrm{d}R'_{\text{PCS}}(t)}{\mathrm{d}t} \right) \\ & \\ \pi \neq \& \& \Pi \end{cases}$$
(14)
$$\frac{1}{R''_{\text{PCS}}(t)} \left(-\frac{\mathrm{d}R''_{\text{PCS}}(t)}{\mathrm{d}t} \right) \\ & \\ \# \& \& \Pi \end{cases}$$

由于目前的可靠性理论难以对MTCB修复时间 进行预测,而实际工程中设备故障后一般采取更换 的方式^[6],MTCB的修复时间可由更换时间代替。

2.2 独立型结构可靠性评估建模

基于唐家湾三端直流配电网工程,进一步建立 独立型结构 MTCB 的可靠性评估模型。该独立型结构 MTCB 由 3 个相互独立的 2-TCB 通过星形方式联 接成三端结构,且三者任一发生故障都不会影响其 他 2 个的正常运行。独立型结构 MTCB 的各端口可 靠性评估模型如图 6 所示。

图 6 独立型结构可靠性评估模型 Fig.6 Reliability evaluation model of independent structure

根据2.1节对2-TCB模块和控制保护系统的可 靠性评估建模可得独立型结构3-TCB相对于端口 $S_1 - S_3$ 的故障率参数 $\lambda'_{s1} - \lambda'_{s3}$ 为:

$$\lambda_{S1}' = \lambda_{S2}' = \lambda_{S3}' = (\lambda_{B} + \lambda_{PEB} + \lambda_{CNP} + \lambda_{M}) + \lambda_{PCS} = \left[\lambda_{B} + \frac{1}{R_{PEB}(t)} \left(-\frac{dR_{PEB}(t)}{dt}\right) + (2\lambda_{L} + \lambda_{C} + \lambda_{T} + \lambda_{D}) + \lambda_{M}\right] + \frac{1}{R_{PCS}(t)} \left(-\frac{dR_{PCS}(t)}{dt}\right)$$
(15)

需要指出的是,对于更多端口的直流断路器,可 采用与上述相同的可靠性评估建模分析方法,且不同 端口数的直流断路器相对于各端口的故障率具有明 显的规律性,对于端口数为m的整体型结构 MTCB: 当m为偶数时,MTCB 相对于各端口的故障率均相 同;当m为奇数时,MTCB 相对于其中m-1个端口的 故障率相同,且不同于另外1个端口的故障率。根 据图 2 及上述对 3-TCB 的建模分析可说明该规律 性,限于篇幅本文不再赘述。

3 MTCB对多端直流配电网可靠性影响

MTCB作为多端直流配电网联接及故障快速隔 离的核心设备,其对多端直流配电网可靠性的影响 主要体现在2个方面:①闭环运行方式可实现故障 隔离区的无缝转供,降低系统平均停电时间和系统 平均停电频率;②MTCB的自身故障将直接作用于 多端直流配电网,降低其可靠性。

针对 MTCB 对多端直流配电网可靠性影响,本 文通过最小割集法进行进一步分析。考虑二阶割集 的最小割集法参见文献[3],可求得负荷点可靠性指 标,即负荷点c故障停电率 λ_{L} 和负荷点c故障停电 时间 U_{Lc} 。基于各负荷点可靠性评估指标,可进一步 计算得到系统可靠性指标,主要包括系统平均停电 频率(SAIFI)、系统平均停电持续时间(SAIDI)、平均 供电可靠性率(ASAI)和系统平均缺供电量(ENS), 各系统可靠性评估指标计算见文献[12]。

多端交流配电网采用"闭环设计,开环运行"方 式,计算其可靠性评估指标需计及转供过程影响, 针对转供过程未能在传统最小割集中体现的问题, 对基于传统最小割集计算出的负荷点可靠性评估 指标进行修正,即:

$$\begin{cases} \lambda_{Lc}^{\prime} = \lambda_{Lc} \\ U_{Lc}^{\prime} = U_{Lc} - \sum_{\psi \in \Phi \cap \Omega} \lambda_{\psi} p_{\psi} (r_{\psi} - t_{0}) \end{cases}$$
(16)

式中: λ'_{L} 、 U'_{L} 分别为修正后计及转供过程影响的负荷点c的负荷点故障停电率和负荷点故障停电时间; σ 为负荷点c的一阶、二阶最小割集的集合; Ω 为负荷点c的备用割集集合; ψ 为发生故障后负荷点c可通过转供恢复供电的配电设备; λ_{ψ} 、 r_{ψ} 分别为 ψ 的故障率和故障修复时间; p_{ψ} 为转供成功的概率; t_{0} 为转供时间。

4 算例分析

4.1 仿真系统介绍

仿真系统依据珠海唐家湾±10 kV 三端直流配 电网拓扑结构进行改进设计^[13],如附录A图A4所 示,三端系统将3个独立的交流电源通过3座换流站 和1个3-TCB进行互联,3条直流主馈线分别引出1 条负荷支路为3个直流负荷点(2、2、1.5 MW)供电。 为了对比交、直流系统的可靠性差异,同时设置了 "3-1"结构的10 kV交流系统,其负荷情况与直流系 统一致,均为直流负荷,主要区别在于所采用的"闭 环设计,开环运行"方式上。

由于MTCB的应用还处于工程示范阶段,暂无 基于统计数据的元件可靠性评估参数,因此本文参 考高压直流输电工程中2-TCB的元件可靠性评估统 计数据、IEEE收集数据及我国军用手册专门用于可 靠性评估的数据^[14+17],并结合示范工程运行情况及 工程经验对部分数据进行修正,得到3-TCB中各元 件的可靠性评估参数,如附录A表A2所示。其余配 电设备可靠性评估参数如附录A表A3所示^[7,18]。设 交流系统的转供时间为2h,转供成功概率为0.7。

4.2 MTCB可靠性计算及冗余分析

本节根据MTCB可靠性模型对其可靠性进行定量计算,并以唐家湾整体型3-TCB为例分析不同冗余度(冗余子模块的个数)对其可靠性的影响。选用ABB公司型号为5SNA 2000K451300的IGBT器件,该器件耐受最大电压为4.5 kV,额定电流为2kA,试

验表明瞬态小于5 ms的情况下其能够关断9~10 kA 电流^[19]。根据式(3)可知,串入6个二极管桥IGBT 子模块即可满足要求。

根据2.1节模型可知,冗余、备用系统的故障率为随时间变化的函数,当二极管桥IGBT子模块冗余度为3时,3-TCB故障率参数随时间变化情况如图7所示。考虑配电设备的定期检修、维护,假设第5年的故障率为稳定运行期间的最大故障率,分别计算得到二极管桥IGBT子模块不同冗余度下3-TCB故障率,如图8所示。图7、8中实、虚线分别表示控制保护系统有、无备用。

图 8 子模块不同冗余度下 3-TCB 的故障率 Fig.8 Fault rate of 3-TCB under different redundancy of submodule

由图7可知,考虑冗余、备用的3-TCB故障率参数为随时间变化的函数,在不考虑检修、维护的情况下,随着工作年限的增长,故障率不断增大,控制保护系统有、无备用对故障率参数的影响不断减小,备用、冗余系统的故障率随着运行年限的持续增长,将趋于一个定值(无备用、冗余时的故障率)。因而应对3-TCB定期进行检修、维护及关键元件的更新替换以防止3-TCB故障率的持续增大。

另外需要指出,文献[3-5]中将备用、冗余系统 故障率近似为系统无故障工作时间的倒数(定值), 该近似处理虽可在一定程度上简化计算,但实则是 将备用、冗余系统理解为一个串联系统,忽略了可靠 性原理中并联模型及 k/n(G)表决模型的特点^[20],存 在一定不足。而本文基于故障率和可靠度关系求解 得到故障率参数很好地反映了并联模型及 k/n(G)表 决模型中故障率随时间变化的特点,更符合实际 情况。

由图8可知,随着二极管桥IGBT子模块冗余度 的不断提高,3-TCB的故障率参数不断减小,且减小 程度不断降低,近似呈现反比关系。因此,现阶段在 实际装置研发中应对MTCB子模块设置冗余以提高 其可靠性,且冗余度应与经济性进行协调优化。

4.3 MTCB对多端直流配电网可靠性影响分析

基于 2.1、2.2 节模型计算得到的 3-TCB 可靠性 评估结果,并利用最小割集算法对附录 A 图 A4 所示 的算例系统进行可靠性量化分析。首先考虑整体型 和独立型 2种结构,并分别在无冗余和冗余度为 3 时 计算负荷点可靠性评估指标,如附录 A 表 A4 所示。 由表可知,整体型结构下各负荷点的供电可靠性水 平和独立型结构相近,即整体型结构在提高经济性 的同时有效保证了其可靠性水平,更适用于实际工 程。交流负荷点 Load₄—Load₆的供电可靠性指标明 显优于直流负荷点 Load₁—Load₃,这是由于目前直 流配电设备的可靠性水平较低所造成的。在 3-TCB 有冗余的情况下,直流负荷点的供电可靠性评估指 标明显优于无冗余情况,说明了冗余设计对可靠性 的积极作用。

基于负荷点可靠性评估指标可进一步得到2种 结构及有、无冗余时的系统可靠性评估指标,如附 录A表A5所示。由表可知,采用整体型结构3-TCB 时系统供电可靠性评估指标优于采用独立型结构 3-TCB的情况,即相较于独立型结构,其在省去1条 转移支路和1条吸能支路提高经济性的同时,确保 了系统供电可靠性仍处于原来水平甚至更高,进一 步说明了现阶段整体型结构3-TCB更具技术经济综 合优势。另外可以发现,3-TCB采用冗余设计大幅 提升了系统供电可靠性水平,进一步说明了冗余设 计的必要性。

4.4 MTCB 对多端直流配电网可靠性影响灵敏度 分析

计及 MTCB 的不同冗余度,并分别考虑电力电 子设备的故障率变化至等于对应交流系统设备的情况,以及为原来故障率的 30%、50%、80%、100%、 110% 这6种情况,得到各种场景下多端交、直流配 电网的供电可靠率,如图9所示,图中λ_{AC}、λ_{DC}分别 为交、直流系统故障率。

由图9可知:①现阶段不考虑冗余设计时,三端 直流配电网的供电可靠性明显低于"3-1"结构交流

图 9 不同场景下多端交、直流配电网可靠率对比 Fig.9 Reliability rate comparison of multi-terminal AC and DC distribution network in different scenarios

配电网;②现阶段 3-TCB 的冗余设计可明显提高三端直流配电网的供电可靠性,但相较于"3-1"结构交流配电网仍有一定差距;③随着电力电子设备可靠性水平的不断提高,三端直流配电网的可靠性水平将逐渐逼近并超过"3-1"结构交流配电网,当电力电子设备的故障率为原来故障率的 30% 时,通过一定冗余设计(冗余度不小于3),可使多端直流配电网的供电可靠性超过"3-1"结构交流配电网,当电力电子设备的故障率下降至接近对应交流设备水平时,即使不考虑冗余设计,多端直流配电网的供电可靠性也将高于"3-1"结构的交流配电网。

5 结论

本文针对未来多端直流配电网的核心设备MTCB 进行可靠性建模研究,并以珠海唐家湾三端口混合 式直流断路器为例进行建模分析。通过算例得出以 下主要结论:

1)当所有元件寿命服从指数分布时,考虑冗余、 备用的3-TCB故障率参数为随时间变化的函数而非 定值,其随工作年限的增长,故障率参数不断增大;

2)3-TCB的故障率参数与二极管桥 IGBT 子模 块冗余度近似呈现反比关系,即随着冗余度的提高, 3-TCB的故障率参数下降速度大为减慢,3-TCB可靠 性趋于稳定,因此,冗余度设置应考虑与经济性协调 优化;

3)相较于传统独立型结构,整体型结构3-TCB 在省去1条转移支路和1条吸能支路提高经济性的 同时,确保了系统供电可靠性仍处于原来水平甚至 更高,因此现阶段整体型结构3-TCB更具技术经济 综合优势;

4) 在目前电力电子设备可靠性水平下, 3-TCB 考虑冗余设计前, 三端直流配电网的可靠性明显低 于"3-1"结构交流配电网,考虑冗余设计后,三端直 流配电网的可靠性得到明显提高,但相较于"3-1"结 构交流配电网仍具有一定差距;

5)随着电力电子设备可靠性水平的提高,三端 直流配电网的可靠性将逐渐逼近并超过"3-1"结构 交流配电网,当电力电子设备故障率下降至接近对 应交流设备水平时,即使不考虑冗余设计,三端直流 配电网的可靠性也将高于"3-1"结构的交流配电网。

附录见本刊网络版(http://www.epae.cn)。

参考文献:

- [1]韩民晓,谢文强,曹文远,等.中压直流配电网应用场景与系统 设计[J].电力系统自动化,2019,43(23):2-11,89.
 HAN Minxiao,XIE Wenqiang,CAO Wenyuan, et al. Application scenarios and system design of medium-voltage DC distribution network[J]. Automation of Electric Power Systems, 2019,43(23):2-11,89.
- [2] 孙鹏飞,贺春光,邵华,等.直流配电网研究现状与发展[J].
 电力自动化设备,2016,36(6):64-73.
 SUN Pengfei,HE Chunguang,SHAO Hua, et al. Research status and development of DC distribution network[J]. Electric Power Automation Equipment,2016,36(6):64-73.
- [3] 曾嘉思,徐习东,赵宇明.交直流配电网可靠性对比[J].电网技术,2014,38(9):2582-2589.
 ZENG Jiasi,XU Xidong,ZHAO Yuming. Reliability comparison of AC and DC distribution network[J]. Power System Technology,2014,38(9):2582-2589.
- [4] 史清芳,徐习东,赵宇明.电力电子设备对直流配电网可靠性影响[J].电网技术,2016,40(3):725-732.
 SHI Qingfang,XU Xidong,ZHAO Yuming. Effects of power electronic devices on DC distribution reliability[J]. Power System Technology,2016,40(3):725-732.
- [5]赵书涛,王波,华回春,等.基于马尔科夫模型的直流断路器可 靠性评估方法[J].电工技术学报,2019,34(S1):126-132.
 ZHAO Shutao,WANG Bo,HUA Huichun, et al. Reliability evaluation method of DC circuit breaker based on Markov model
 [J]. Transactions of China Electrotechnical Society, 2019, 34 (S1):126-132.
- [6] 王秀丽,郭静丽,庞辉,等. 模块化多电平换流器的结构可靠性 分析[J]. 中国电机工程学报,2016,36(7):1908-1914.
 WANG Xiuli, GUO Jingli, PANG Hui, et al. Structural reliability analysis of modular multi-level converters[J]. Proceedings of the CSEE,2016,36(7):1908-1914.
- [7] 杨汾艳,李海波,盛超,等. 多端口级联式电力电子变压器可靠 性评估模型及其应用[J]. 电力系统保护与控制,2019,47(20): 41-49.

YANG Fenyan, LI Haibo, SHENG Chao, et al. Reliability evaluation model of cascaded multiport power electronic transformer and its application[J]. Power System Protection and Control, 2019, 47(20): 41-49.

- [8] 王金健,王志新. 一种具有限流能力的新型混合式高压直流断路器拓扑[J]. 电力自动化设备,2019,39(10):143-149.
 WANG Jinjian,WANG Zhixin. A novel hybrid high-voltage DC circuit breaker topology with current limiting capability[J].
 Electric Power Automation Equipment,2019,39(10):143-149.
- [9] 肖晃庆,徐政,刘高任,等.新型高压直流断路器的自供能控制 策略[J].电力自动化设备,2019,39(1):1-9.

XIAO Huangqing, XU Zheng, LIU Gaoren, et al. Self-powered control strategy of new HVDC circuit breaker[J]. Electric Power Automation Equipment, 2019, 39(1):1-9.

- [10] 屈鲁,余占清,陈政宇,等. 三端口混合式直流断路器的工程应用[J]. 电力系统自动化,2019,43(23):141-146,154.
 QU Lu,YU Zhanqing,CHEN Zhengyu, et al. Engineering application of three-terminal hybrid DC circuit breaker[J]. Automation of Electric Power Systems,2019,43(23):141-146,154.
- [11] WEI T, YU Z Q, ZENG R, et al. A novel hybrid DC circuit breaker for nodes in multi-terminal DC system [C] //IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society. Beijing, China; IEEE, 2017;633-638.
- [12] 国家能源局.中华人民共和国电力行业标准:中压配电网可靠 性评估导则DL/T 1563-2016[S].北京:中国电力出版社, 2016.
- [13] QU L, YU Z Q, SONG Q, et al. Planning and analysis of the demonstration project of the MVDC distribution network in Zhuhai[J]. Frontiers in Energy, 2019, 13(1):120-130.
- [14] BENNETT M G, DHALIWAL N S, LEIRBUKT A. A survey of the reliability of HVDC systems throughout the world during 2009-2010[R]. Paris, France; CICRE, 2012.
- [15] BENNETT M G, DHALIWAL N S, LEIRBUKT A. A survey of the reliability of HVDC systems throughout the world during 2011-2012[R]. Paris, France: CICRE, 2014.
- [16] IEEE. IEEE Std 493-2007-IEEE recommended practice for the design of reliable industrial and commercial power systems[S]. New York, America: IEEE, 2007.
- [17] 中国人民解放军总武装部.电子设备可靠性预计手册:GJB/Z
 299C-2006[S].北京:总装备部军标出版发行部,2006.
- [18] 邓帅荣.基于元件和设备的中低压直流配电网可靠性评估
 [D].重庆:重庆大学,2017.
 DENG Shuairong. Reliability evaluation of medium and low voltage DC distribution network based on power electronic devices and equipments[D]. Chongqing: Chongqing University, 2017.
- [19] 刘恒,程铁汉,钟建英,等. 基于耦合负压回路的高压直流断路器集成化设计[J]. 南方电网技术,2019,13(10):15-23.
 LIU Heng, CHENG Tiehan, ZHONG Jianying, et al. Integrated design of high voltage DC circuit breaker based on coupled negative voltage circuit[J]. Southern Power System Technology, 2019,13(10):15-23.
- [20] 王守相. 配电系统可靠性实践方法及应用[M]. 北京:中国电力出版社,2013:40-43.

作者简介:

王天霖

王天霖(1991—),男,河北磁县人,高 级工程师,硕士,主要研究方向为电力系统 规划与运行(E-mail:398749838@qq.com); 杨墨缘(1997—),男,河南漯河人,硕 士研究生,主要研究方向为配电网规划与 评估(E-mail:1243341584@qq.com);

高 崇(1983—),男,吉林长春人,高 级工程师,硕士,主要研究方向为电力系统 规划与运行(**E-mail**:25903257@qq.com);

曹华珍(1974—),女,湖北安陆人,高级工程师,硕士,主 要研究方向为电力系统规划与运行(E-mail:729875469@qq. com)。

(编辑 王欣竹)

(下转第224页 continued on page 224)

218

nization error enduring capacity of distributed bus-bar current differential protection[J]. Electric Power Automation Equipment, 2018, 38(9): 205-211.

[14] 夏经德,秦瑞敏,钱慧芳,等. 多端线路差动保护改进算法的研 究[J]. 电力自动化设备,2018,38(12):140-147. XIA Jingde, QIN Ruimin, QIAN Huifang, et al. Study on improved algorithm in differential protection of multi-terminal line[J]. Electric Power Automation Equipment, 2018, 38(12): 140-147.

作者简介:

王风光(1981-),男,山东聊城人,高级工程师,硕士,研究

方向为电力系统继电保护(E-mail:wangfg@ nrec.com);

力(1970-),男,江苏南京人,研 圶 究员级高级工程师,硕士,从事电力系统继 电保护研究与开发工作(E-mail:lili@nrec. com);

王风光

吕

究员级高级工程师,硕士,从事电力系统 继电保护方面的研究与开发工作(E-mail: lvh@nrec.com).

航(1971-),男,江苏南京人,研

(编辑 任思思)

Optimized solution scheme of bus protection for dead zone fault

WANG Fengguang, LI Li, LÜ Hang, DING Jie, DAI Jiaqiang, GONG Xiao

(NR Electric Co., Ltd., Nanjing 211102, China)

Abstract: Bus protection configures bus coupler dead zone protection for bus coupler dead zone fault, but not configures feeder dead zone protection for feeder dead zone fault. The existing bus coupler dead zone protection is introduced, and an optimized solution scheme is proposed, in which the current transformers on both sides of bus coupler are connected with bus protection simultaneously, and the bus coupler dead zone differential protection is set. The problem that bus coupler dead zone protection does not have selectivity and its fault cut range is large, is solved by the propose scheme. The operating behavior of the bus differential protection and line protection when feeder dead zone fault occurs is introduced, the necessity of configuring feeder dead zone protection for bus protection is pointed out, and the operating behavior of the feeder dead zone protection is analyzed. Then the corresponding solution for maloperation risk of the feeder dead zone protection is proposed, which avoids unnecessary circuit breaker tripping and improves the selectivity of the bus protection.

Key words: bus coupler dead zone protection; feeder dead zone protection; bus differential protection; bus protection; relay protection

(上接第218页 continued from page 218)

Reliability evaluation model of multi-terminal DC circuit breaker and its application

WANG Tianlin¹, YANG Moyuan², GAO Chong¹, CAO Huazhen¹, WU Yaxiong¹,

ZHANG Zhen², OUYANG Sen²

(1. Power System Planning Research Center of Guangdong Power Grid Co., Ltd., Guangzhou 510030, China;

2. School of Electric Power, South China University of Technology, Guangzhou 510640, China)

Abstract: MTCB (Multi-Terminal DC Circuit Breaker) is the core equipment to realize the connection and fault isolation of multi-terminal converter station in the future, and its reliability directly affects the reliability level of multi-terminal DC distribution network. Firstly, the topology and working principle of MTCB are analyzed. Then, taking the three-terminal hybrid DC circuit breaker in Zhuhai "Internet plus" demonstration project as an example, based on the engineering reliability principle and considering the redundancy level of devices, MTCB reliability evaluation model is established. The influence of MTCB on the reliability of multiterminal DC distribution network is analyzed. Finally, based on the structure of Tangjiawan three-terminal DC distribution network, the reliability of MTCB under different design modes and redundancy levels is calculated. The influence analysis and sensitivity analysis of MTCB on the reliability of multi-terminal DC distribution network are carried out, and the correctness and effectiveness of the proposed model are verified. Key words: multi-terminal; DC circuit breaker; DC distribution network; reliability evaluation; redundancy

analysis

附录 A

表 A1	MTCB	类型
------	------	----

Table A1	Types of multi-terminal DC circuit breaker			
类型	载流支路	转移支路	吸能支路	
机械式	机械开关	LC 震荡元件	耗能元件	
全固态式	晶闸管开关、 辅助固态开关	主固态开关	耗能元件	
混合式	快速机械开关、 (辅助开关)	电力电子主开关、 (辅助电路)	耗能元件	

图 A1 唐家湾三端口混合式直流断路器拓扑结构

Fig.A1 Topology structure of Tangjiawan three-terminal hybrid DC circuit breaker

Fig.A2 Transfer branch topology

Fig.A3 Schematic diagram of relationship between reliability and failure rate

Fig.A4 Topological structure of case studies

表 A2 3-TCB 元件可靠性参数

Table A2 F	Reliability p	arameters	of 3-TCB	components
------------	---------------	-----------	----------	------------

元件	故障率/(次 a ⁻¹)	元件	故障率/(次 a ⁻¹)
В	0.006 000	NCU	0.001 402
IGBT	0.011 907	ICU	0.001 402
D	0.003 800	PD	0.035 040
L	0.000 245	ECT	0.002 103
С	0.000 916	BCU	0.010 500
Т	0.001 643	FEU	0.009 500
М	0.001 320	OCP	0.009 200
SCU	0.001 402	IKD	0.009 800

表 A3 直流配电设备可靠性参数

Table A3 Reliability parameters of DC distribution equip-

ment					
配电设备	故障率/(次 a ⁻¹)	修复时间/(h 次 ⁻¹)			
中压换流站	1.153	7			
单向直流变压器	0.075	10			
交流变压器	0.013	10			
中压换流器	0.070	5			
低压换流器	0.005	16			
交、直流电缆	0.002	30			
交流断路器	0.006	4			

表 A4 负荷点可靠性指标 Table A4 Load reliability indexes

结构	负荷点	负荷点故障	负荷点故障		
111	2414770	停电率/(次 a ¹)	停电时间/(h a ')		
敕休刑	Load ₁	0.366 7	3.691 0		
正伊主	$Load_2$	0.375 7	3.962 2		
儿儿示	Load ₃	0.245 2	2.476 0		
敕休刑	Load ₁	0.155 8	1.582 0		
並件至 方 写 会	$Load_2$	0.164 8	1.853 2		
有九赤	Load ₃	0.058 5	0.609 0		
独立刑	Load ₁	0.360 7	3.631 0		
玉豆全	$Load_2$	0.369 7	3.902 2		
儿儿示	Load ₃	0.285 7	2.881 0		
独立刑	Load ₁	0.149 8	1.522 0		
五豆全	$Load_2$	0.158 8	1.793 2		
有九赤	Load ₃	0.074 8	0.772 0		
六法至	$Load_4$	0.043 2	0.310 1		
又佩尔	Load ₅	0.052 2	0.404 1		
坈垍构	Load ₆	0.105 2	0.900 1		

表 A5 系统可靠性指标

Table A5 System reliability indexes

	指标值			
指标	整体型 无冗余	整体型 有冗余	独立型 无冗余	独立型 有冗余
SAIFI/(次 a ⁻¹)	0.329 2	0.126 4	0.338 7	0.127 8
$SAIDI/(h a^{-1})$	3.376 4	1.348 1	3.471 4	1.362 4
ASAI/%	99.961 5	99.984 6	99.9604	99.984 4
ENS/(MW h)	6.092 5	2.387 3	6.292 5	2.426 0