基于全绕组拓扑结构的移相变压器建模及应用

李晓华1,陈镇生1,罗一杰1,刘 玮2,屠卿瑞2

(1. 华南理工大学 电力学院,广东 广州 510640;2. 广东电网有限责任公司电力调度控制中心,广东 广州 510600)

摘要:针对现有移相变压器稳态数学模型不能适用于内外部端口故障电气量计算的问题,基于相分量法建立 其全相数学模型。以对称双芯式移相变压器为例,根据其电磁约束关系,推导出节点电压与电流间的关系 式,再通过绕组拓扑结构对节点进行合并及接地处理,得到移相变压器的导纳矩阵和全相等效电路模型,并 对矩阵进行修正以适应不同故障情况下的计算。最后,利用该模型分析了对称双芯式移相变压器在不同相 序网络中的运行特性。对比仿真结果可知,所建全相数学模型能够准确计算各类端口故障下的电气量,所得 等效相序电路可以有效反映不同序分量下移相变压器的运行特性。

0 引言

移相变压器具有控制电网有功潮流、消除环网 电磁环流、提高断面输送的能力,因此受到了国内外 学者的广泛关注^[1]。作为国家能源局"十四五"规划 中提升大型输电通道利用率的重要手段之一,移相 变压器在我国有着巨大的工程运用前景^[2]。其独特 的串接方式和工作特性与传统变压器大不相同,接 入电网后势必会对系统保护提出新的挑战。而保护 整定的核心问题在于各类短路故障下的电气量计 算,现有模型却是建立在系统对称稳态的基础之上, 并不能用于各类故障下电气量的求解。因此需要建 立适用于各种端口故障情况下电气量求解的数学 模型。

目前国内外学者已对移相变压器在本体结构 设计^[3]、在线融冰^[4]等应用方面进行了相关研究。 对其故障分析的研究多集中在对称稳态数学模 型、本体保护方法、对系统影响等方面^[5],并没有 考虑当系统发生扰动时,移相变压器的等效模型 及电气量求解问题。文献[6]和文献[7]根据对称 双芯式移相变压器 ST-PST(Symmetrical Two-core Phase-Shifting Transformer)的连接结构和电磁约束 关系,推导出其稳态等效模型。文献[8]进一步利用 此模型推导了负载条件下有载分接开关的级电压计 算公式,并分析了级电压的变化规律及影响因素。

收稿日期:2021-09-14;修回日期:2022-01-20 在线出版日期:2022-04-19

基金项目:广东电网有限责任公司科技项目(GDKJXM20198295); 国家自然科学基金智能电网联合基金资助项目(U1766213) Project supported by the Science and Technology Project of Guangdong Power Grid Corporation(GDKJXM20198295) and the Smart Grid Joint Fund of National Natural Science Foundation of China(U1766213) 该类文献虽然分析了移相变压器的基本工作原理和 分接开关随负载的变化情况,但以系统正常稳态运 行为前提,并没有分析系统短路故障下的运行情况。 文献[9]针对原有差动保护的缺点提出了一种数字 化的移相变压器保护方案。文献[10]提出了一种基 于方向性比较的移相变压器保护方法。文献[11]提 出一种基于零序电流的匝间保护新原理,通过构建 自适应动作门槛和制动量,极大地提高了保护的灵 敏性和可靠性。文献[12]提出一种新的保护算法, 可以对故障进行有效定位和分类。文献[13]根据移 相器的工作原理,分析了移相变压器的加入对原有 系统纵联保护的影响。此类文献对移相变压器的研 究主要在于保护原理本身的适用性,而电气量是基 于测量或是系统参数对称进行设置,对于复杂情况 下的电气量求解并没有涉及。

综上,现有关于移相变压器的研究缺乏一套综合考虑转角和内阻抗并适用于不对称运行和内外部故障下电气量求解的数学模型。为了更好地对移相变压器本体保护及与之临近线路的保护适应性展开分析,本文以工程中广泛应用的ST-PST为例,根据其绕组结构和电磁约束关系建立了全相数学模型^[14-18]。以某220 kV ST-PST为例验证了模型的准确性,并进一步利用该模型分析了不同相序下阻抗和移相特性,为移相变压器故障计算与保护分析奠定基础。

1 ST-PST拓扑连接及电路模型

ST-PST由串联变压器(简称串联变)和并联变 压器(简称并联变)构成。串联变绕组的连接方式为 Ⅲ/△,其一次侧绕组纵向接入网侧,且带有中间抽 头连接并联变的一次侧,其接入方式和运行特点与传 统变压器差异较大。并联变的连接方式为Y_n/Y_n, 其二次侧与串联变二次侧相连且具有不同的分接头 档位,用于调节输出电压的角度。ST-PST的整体连 接方式如图1所示。图中:U_{ix}、U_{0x}(x=A,B,C)分别 为移相变压器的x相输入、输出电压;U_{SPx}为串联变 的x相输入电压;U_{P21x}为并联变的x相输出电压。根 据图1中ST-PST的连接关系可得其全相等效电路如 附录A图A1所示。

Fig.1 Connection diagram of ST-PST

2 ST-PST的数学模型

2.1 稳态数学模型及存在的问题

2.1.1 对称运行时ST-PST稳态数学模型

对称运行时 ST-PST 可由 1 个理想的移相器串联 1 个阻值随分接档位改变的阻抗 Z 构成,如图 2 所 示。图中: α_0 为空载时输出电压与输入电压的移相 角度差,该角度的大小可由式(1)求得; U_1 、 I_1 分别为 输入电压、电流; U_0 、 I_0 分别为输出电压、电流; U_0^0 为 空载输出电压;Z 为等效漏阻抗;R、X 分别为等效漏 电阻、等效漏电抗。关于等效漏阻抗Z的求解,文献 [6]进行了详细推导,本文不再叙述。

图 2 对称运行时 ST-PST 的等效电路 Fig.2 Equivalent circuit of ST-PST in symmetrical operation

$$\alpha_0 = 2 \arctan\left(\sqrt{3} D_x N_{\text{Sx}} / N_{\text{Px}}\right) \tag{1}$$

式中: N_{sx} 、 N_{Px} 分别为串、并联变的变比; D_x 为并联变 二次侧的接入绕组匝数与总匝数之比。负载运行时 由于Z的存在导致输出电压 U_0 会有幅值和相角的 偏移,记偏移的角度为 θ ,当负载阻抗角为 φ 时, θ 的 计算公式如式(2)所示。

$$\theta = \arctan \frac{\left| I_0 \right| (X \cos \varphi - R \sin \varphi)}{\left| U_0 \right| + \left| I_0 \right| (X \sin \varphi + R \cos \varphi)}$$
(2)

此外,滞后调节时电压、电流运行相量图见附录 A图A2。

2.1.2 问题分析

串联变的连接方式为Ⅲ/△,与传统变压器截 然不同。并联变为不常见的Y_a/Y_a连接方式,且输 出电压具有一定的转角关系。现有 ST-PST 模型仅 针对系统稳态对称情况下的电气量计算^[6],并不能 用于计算不对称故障下的电压、电流。其次,当ST-PST 内部端口处发生短路故障时,三相之间具有耦 合性,并不具有独立性,无法用单相等效表征三相, 且从外部难以进行等效。

针对现有数学模型的局限性,本文利用相分 量法对 ST-PST 进行建模。首先,根据电磁约束关 系推导出描述串联变Ⅲ/△连接和并联变Y_n/Y_n 连接关系的导纳矩阵;再根据节点合并方法,对串、 并联变的特殊拓扑连接方式进行合并处理,得到 ST-PST 的导纳矩阵;最后,根据故障情况对矩阵进 行修正并求取节点电压,再由节点电压求取各支路 电流。所建模型适用于端口各种短路和断路情况下 的电气计算,不依赖于系统是否对称,并将具有移相 功能的电磁耦合回路等效为电气上直接相连的等值 电路,具有良好的工程运用性。

2.2 相分量法数学建模

为了更好地建立ST-PST的全相数学模型,对附录A图A1所示等效电路进行节点编号的定义,其简化拓扑节点定义见附录A图A3。

2.2.1 并联变的导纳矩阵

ST-PST的并联变由3个双绕组变压器连接而成,根据图A3可得并联变所涉及的节点编号,见附录A图A4(a)。以A相为例,根据电磁约束关系可以得到节点注入电流与电压的关系如下:

$$\begin{cases} I_{2} = Y_{PA} (U_{22'} - N_{PA} U_{33'}) \\ I_{3} = Y_{PA} (N_{PA}^{2} U_{33'} - N_{PA} U_{22'}) \end{cases}$$
(3)

式中: $Y_{PA} = (Z_{P1A} + D_A^2 N_{PA}^2 Z_{P2A})^{-1}$, N_{PA} 为A相并联变的变比, Z_{P1A}, Z_{P2A} 分别A相为并联变满档时的一、二次 侧漏抗; I_2, I_3 分别为A相节点2、3注入电流; $U_{22'}, U_{33'}$ 分别为A相节点2、2'和3、3'间电压。则可以得到A 相节点2、2'和3、3'的导纳矩阵 Y_{P1} 为:

$$\boldsymbol{Y}_{\mathrm{Pl}} = \begin{bmatrix} Y_{\mathrm{PA}} & -Y_{\mathrm{PA}} & -N_{\mathrm{PA}}Y_{\mathrm{PA}} & N_{\mathrm{PA}}Y_{\mathrm{PA}} \\ -Y_{\mathrm{PA}} & Y_{\mathrm{PA}} & N_{\mathrm{PA}}Y_{\mathrm{PA}} & -N_{\mathrm{PA}}Y_{\mathrm{PA}} \\ -N_{\mathrm{PA}}Y_{\mathrm{PA}} & N_{\mathrm{PA}}Y_{\mathrm{PA}} & N_{\mathrm{PA}}^{2}Y_{\mathrm{PA}} & -N_{\mathrm{PA}}^{2}Y_{\mathrm{PA}} \\ N_{\mathrm{PA}}Y_{\mathrm{PA}} & -N_{\mathrm{PA}}Y_{\mathrm{PA}} & -N_{\mathrm{PA}}^{2}Y_{\mathrm{PA}} & N_{\mathrm{PA}}^{2}Y_{\mathrm{PA}} \end{bmatrix}$$
(4)

Y_{P1}中的行(列)元素从左(上)到右(下)表示的 节点依次为2、2'、3、3',主对角线元素表示自导纳,非 对角线元素表示互导纳。进一步可得A相等效电路 图如附录A图A4(b)所示。 同样对B、C相做上述处理。记并联变的B相导 纳矩阵为Y_{P2},C相导纳矩阵为Y_{P3},Y_{P2}、Y_{P3}的矩阵表达 式见附录A式(A1),则并联变的不定导纳矩阵Y_P的 计算式见式(5),Y_P的具体表达式见附录A式(A2)。

$$Y_{\rm P} = Y_{\rm P1} + Y_{\rm P2} + Y_{\rm P3} \tag{5}$$

2.2.2 串联变的导纳矩阵

串联变由3个三绕组变压器构成,其等效电路、 节点编号和电流编号见附录A图A5(a)。

同样根据电磁关系可得到节点注入电流与电压 之间的关系,以A相为例,其矩阵Y_{s1}表达式为:

$$\boldsymbol{Y}_{\text{S1}} = \begin{bmatrix} A_{1_1} & A_{1_2} & A_{1_4} & A_{1_7} & A_{1_11} \\ A_{2_1} & A_{2_2} & A_{2_4} & A_{2_7} & A_{2_11} \\ A_{4_1} & A_{4_2} & A_{4_4} & A_{4_7} & A_{4_11} \\ A_{7_1} & A_{7_2} & A_{7_4} & A_{7_7} & A_{7_11} \\ A_{11_1} & A_{11_2} & A_{11_4} & A_{11_7} & A_{11_11} \end{bmatrix}$$
(6)

Y_{s1}为对称矩阵,上三角元素表达式为:

$$\begin{cases} A_{1,1} = \frac{M_{A3}}{K_{A}}, \quad A_{1,2} = \frac{-M_{A2} - M_{A3}}{K_{A}} \\ A_{1,4} = \frac{M_{A2}}{K_{A}}, \quad A_{1,7} = -A_{1,11} = \frac{N_{S1A}Z_{S3A}}{K_{A}} \\ A_{2,2} = \frac{M_{A1} + 2M_{A2} + M_{A3}}{K_{A}}, \quad A_{2,4} = \frac{-M_{A1} - M_{A2}}{K_{A}} \\ A_{2,7} = -A_{2,11} = \frac{N_{S2A}Z_{S1A} - N_{S1A}Z_{S3A}}{K_{A}} \\ A_{4,4} = \frac{M_{A1}}{K_{A}}, \quad A_{4,7} = -A_{4,11} = -\frac{N_{S2A}Z_{S1A}}{K_{A}} \\ A_{7,7} = A_{11,11} = -A_{7,11} = \frac{N_{S1A}^{2}Z_{S3A} + N_{S2A}^{2}Z_{S1A}}{K_{A}} \\ \end{cases}$$

$$\begin{cases} M_{A1} = Z_{S1A} + N_{S1A}^{2}Z_{S2A} \\ M_{A2} = N_{S1A} N_{S2A} Z_{S2A} \\ M_{A3} = Z_{S3A} + N_{S2A}^{2}Z_{S2A} \\ M_{A3} = Z_{S3A} + N_{A2}^{2} \end{cases}$$

$$(8)$$

式中:Z_{SIA}—Z_{SJA}为A相串联变的3个绕组的等值漏抗;N_{SIA}、N_{SZA}分别为A相串联变绕组1-3和绕组2-3间的变比。根据A相导纳矩阵,可以得到A相等效电路模型,见附录A图A5(b)。

串联变 B、C 两相亦可以进行类似处理,分别将 导纳矩阵记为 Y_{s2}、Y_{s3},其表达式分别见附录 A 式 (A3)、(A4)。则串联变的不定导纳矩阵 Y_s的计算公 式如式(9)所示,其具体的表达式见附录 A 式(A5)。

$$Y_{\rm S} = Y_{\rm S1} + Y_{\rm S2} + Y_{\rm S3} \tag{9}$$

2.2.3 串并联节点合并及系统接地处理

根据相分量法中节点*i*与节点*j*的合并方法,将 第*j*行和列加入第*i*行和列,并删除矩阵中节点*j*的 行和列。合并后的数学表达式为:

$$\begin{bmatrix} \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & Y_{i,i} + Y_{i,j} + & \cdots & Y_{i,j-1} + & Y_{i,j+1} + & \cdots \\ Y_{j,i} + Y_{j,j} & & Y_{j,j-1} & & Y_{j,j+1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \cdots & Y_{j-1,i} + Y_{j-1,j} & \cdots & Y_{j-1,j-1} & Y_{j-1,j+1} & \cdots \\ \cdots & Y_{j+1,i} + Y_{j-1,j+1} & \cdots & Y_{j,j-1} & Y_{j+1,j+1} & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{bmatrix}$$
(10)

ST-PST中串联变与并联变的连接关系可以简 化为附录A图A6所示。根据上述处理方法对需要 合并的节点进行处理,便得到ST-PST的导纳矩 阵Y_{psmo}。

系统节点接地电压箝位为0,电压从待求量变为已知量。根据相分量法中接地节点的处理方法, 删去电压向量中此节点对应元素。即删去导纳矩阵 相应的行和列,形成*n*-1阶的导纳矩阵。节点*i*接地 后矩阵如式(11)所示。

$$\begin{bmatrix} \cdots & \cdots & \cdots & \cdots \\ \cdots & Y_{i+1_i-1} & Y_{i-1_i+1} & \cdots \\ \cdots & Y_{i+1_i-1} & Y_{i+1_i+1} & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \end{bmatrix}$$
(11)

利用节点接地处理方法,对矩阵 Y_{PSTD} 中接地节 点的行列进行删除,得到 ST-PST 的导纳矩阵 Y_{PST} ,其 表达式见附录 A 式(A6)。从附录结果可以看出 Y_{PST} 为 12×12 阶的矩阵,为叙述方便,记 Y_{PST} 如式(12) 所示。

$$\boldsymbol{Y}_{\text{PST}} = \begin{bmatrix} Y_{1_1} & Y_{1_2} & \cdots & Y_{1_12} \\ Y_{2_1} & Y_{2_2} & \cdots & Y_{2_12} \\ \vdots & \vdots & \ddots & \vdots \\ Y_{12} & Y_{12} & \cdots & Y_{12} & y_{12} \end{bmatrix}$$
(12)

根据ST-PST的导纳矩阵可以得到其全相等效 电路模型,如附录A图A7所示。

2.3 不同故障情况下ST-PST的矩阵修正

当系统发生故障时,需要对故障涉及节点所对 应的矩阵元素进行修改。ST-PST加入线路后的等 效电路图如图3所示。图中: U₁、Z₁和U₂、Z₂分别为 两端电源的电压和等效阻抗; M、N分别表示ST-PST 接入线路的点M、N; Z_{line}为线路等效阻抗。

图 3 标注了 ST-PST 不同故障发生的位置, F_1 、 F_2 为外部故障, F_3 、 F_4 为内部端口故障。以故障 F_3 为 例,矩阵元素修改如表1所示。表中:发生故障 F_3 涉 及的节点编号为2、6、10;*Z*_{fault}为故障过渡阻抗。表 中给出了发生典型故障时的矩阵元素修改方法,发 生断路故障时两节点间的阻抗应为无穷大,但为满 足程序计算和工程允许误差,本文取10¹⁰表示无穷 大阻抗。另外,由于发生匝间故障时的情况较为复 杂,本文模型暂未考虑匝间故障的计算。

表1 不同故障类型的矩阵修正

Table 1 Matrix correction for different fault types

故障类型	对应导纳矩阵修改
F ₃ 为A相故障 (节点2接地)	$Y_{2_2} \rightarrow Y_{2_2} + 1/Z_{\text{fault}}$
F ₃ 为AB两相故障 (节点2、6两相短路)	$\begin{array}{c} Y_{2_{-2}} \rightarrow Y_{2_{-2}} + 1/Z_{\text{fault}} \\ Y_{6_{-6}} \rightarrow Y_{6_{-6}} + 1/Z_{\text{fault}} \\ Y_{2_{-6}} \rightarrow Y_{2_{-6}} + 1/Z_{\text{fault}} \\ Y_{6_{-2}} \rightarrow Y_{6_{-2}} + 1/Z_{\text{fault}} \end{array}$
F ₃ 为AB两相接地故障 (节点2、6接地)	$\begin{array}{c} Y_{2_2} \longrightarrow Y_{2_2} + 1/Z_{\text{fault}} \\ Y_{6_6} \longrightarrow Y_{6_6} + 1/Z_{\text{fault}} \end{array}$
F ₃ 为三相故障 (节点2、6、10接地)	$\begin{array}{c} Y_{2_2} \rightarrow Y_{2_2} + 1/Z_{\text{fault}} \\ Y_{6_6} \rightarrow Y_{6_6} + 1/Z_{\text{fault}} \\ Y_{10_10} \rightarrow Y_{10_10} + 1/Z_{\text{fault}} \end{array}$
点 <i>M</i> 处发生A相断路 (节点1、2断路)	Z _{S1A} 赋值为10 ¹⁰

3 模型验证与应用

本 文 以 某 220 kV 的 ST-PST 参 数 为 例,在 PSCAD / EMTDC 中搭建了图 3 所示仿真模型,两端电 源参数为 220 \angle 0° kV,电源等效阻抗为 0.75+j3.95 Ω , 线路阻抗为 0.36+j1.86 Ω , ST-PST 技术参数见附录 A 表 A1。

根据上述建模方法编写计算机程序,得到系统 模型的导纳矩阵,求取上文中各节点电压和支路电 流。对比故障稳态时的 PSCAD 仿真数据和程序计 算结果,对本文建模的正确性和有效性进行验证。 此外,利用本文所得数学模型详细分析其在不同相 序下的等效阻抗和移相特性,并得到其在不同相序 网络中的等效电路。

3.1 不对称稳态电气量验证

根据图3所示4处故障,在1% 励磁电流情况 下,分别对比PSCAD 仿真数据与本文方法计算数 据。限于篇幅,本文以内部故障F₃为例,故障阻抗大 小设为1、10、100、1000 Ω,图4中给出了三相输出电 压在不同阻抗类型下计算值与仿真值的最大误差百 分比。由图4可以看出故障下仿真结果与计算结果 误差均较小,在0.1%以下,验证了模型的准确性。

3.2 模型在相序特性分析中的应用

3.2.1 相序阻抗分析

当F₁处发生4种典型故障时,利用本文方法进行计算,求取图3中点*M*和点*N*的三相电压、电流值,根据测量结果求取序分量,再求取序阻抗。以正序阻抗为例,其计算方法见式(13),正、负、零序阻抗

最大误差结果 Fig.4 Results of maximum error between simulative and calculative values when F₃ represents

phase-A ground fault

$$(Z_{(1)}-Z_{(0)}) 大小的计算结果如图5所示。$$
$$Z_{(1)} = \frac{U_{MA} + aU_{MB} + a^2 U_{MC}}{I_{MA} + aI_{MB} + a^2 I_{MC}} - \frac{U_{NA} + aU_{NB} + a^2 U_{NC}}{I_{NA} + aI_{NB} + a^2 I_{NC}} (13)$$

式中: $Z_{(1)}$ 为正序阻抗;a为旋转因子, $a=1 \angle 120^{\circ}$; U_{Mx} 、 I_{Mx} 和 U_{Nx} 、 I_{Nx} 分别为点M和点N的x相电压、电流。 图 5 所示的阻抗大小综合了 4 种典型故障计算结 果。由图可知:ST-PST的正负序阻抗相等且随着档 位增加而增加;零序阻抗与档位无关,三序阻抗在零 档时相等。

3.2.2 相序移相特性

同样以 F₁表示的4种典型故障为例进行计算, 进一步分析不同档位下 ST-PST 对相序电压的移相 特性。由于等效内阻的存在,会改变输出电压相角, 但对电流没有影响,因此利用电流对相角特性进行 分析。以正序滞后为例,正序移相角α₍₁₎的计算方法 如式(14)所示,综合计算结果如图6所示,图中α₍₂₎、 α₍₀₎分别为负序、零序移相角。由图可知,ST-PST 的 移相特性在三序中并不一致,若正序为滞后,则负序

为超前,反之亦然。对于零序而言,其移相角为0°, 并没有移相作用。

$$\alpha_{(1)} = \operatorname{angle}\left(\frac{I_{MA} + aI_{MB} + a^2 I_{MC}}{I_{NA} + aI_{NB} + a^2 I_{NC}}\right)$$
(14)

式中:angle(·)为相角求取函数。

3.2.3 相序等效电路

上述结果表明,ST-PST在不同序网络中的等效模型不同。利用本文所述模型可得相序等效电路如图7所示。图中, $I_{(1)}$ 、 $I_{(2)}$ 、 $I_{(0)}$ 和 $U_{(1)}$ 、 $U_{(2)}$ 、 $U_{(0)}$ 分别为正、负、零序电流和电压。

图7 ST-PST的三序等效电路

Fig.7 Phase sequence equivalent circuit of ST-PST

图7中阻抗和移相角的计算公式如下:

$$\begin{cases} Z_{(1)} = 2Z_{S1x} + \frac{Z_{S2x} + 3D_x^2 \left(N_{Px}^{-2} Z_{P1x} + Z_{P2x}\right)}{0.25N_{Sx}^{-2} + 0.75D_x^2 N_{Px}^{-2}} \\ Z_{(2)} = Z_{(1)} \\ Z_{(0)} = 2Z_{S1x} + 4N_{Sx}^2 Z_{S2x} \\ \alpha_{(1)} = -\alpha_{(2)} = 2\arctan\frac{\sqrt{3} D_x N_{Sx}}{N_{Px}} \end{cases}$$
(15)

由此可得ST-PST的三序特性:正负序相角调节 相反,但阻抗一致,阻抗大小与ST-PST的等效漏阻 抗和变比均相关;零序下没有相角调节作用,可等效 为1个恒定阻抗,其大小仅与串联变参数相关。因 此,在含有移相变压器的系统保护中需要考虑其相 序特性的不同。

4 结论

针对现有 ST-PST 数学模型并不能适应内外部 不对称运行状况的问题,本文应用相分量法推导了 ST-PST 的数学模型,并利用该模型分析了不同相序 下 ST-PST 的运行特性。经实例验证,主要结论如下。

1)针对现有数学模型的不足之处,应用相分量分 析法得到了ST-PST的全相数学模型,并基于实例验 证了模型的准确性。该方法不受限于移相变压器的 拓扑结构、不依赖系统运行状况,能适应各种端口短 路、断路故障情况下的电气量计算,便于工程运用。

2)不同相序下移相变压器的运行特性不同:正 负序在不同档位下的等效阻抗虽然一致,但移相特 性却相反;零序下移相变压器可等效为恒定阻抗,阻 值不随档位变化而变化,且并不改变电压相角。 附录见本刊网络版(http://www.epae.cn)。

参考文献:

- 陈刚,丁理杰,汤凡,等.利用移相变压器提高川渝断面输电能力的研究[J].四川电力技术,2014,37(5):49-54.
 CHEN Gang, DING Lijie, TANG Fan, et al. Research on improving transfer capability in tie-line of Sichuan-Chongqing power grid by phase-shifting transformer[J]. Sichuan Electric Power Technology,2014,37(5):49-54.
- [2]刘国静,祁万春,黄俊辉,等.统一潮流控制器研究综述[J]. 电力系统及其自动化学报,2018,30(12):78-86.
 LIU Guojing, QI Wanchun, HUANG Junhui, et al. Review of researches on unified power flow controller[J]. Proceedings of the CSU-EPSA,2018,30(12):78-86.
- [3]赵镜红,马远征,孙盼. 基于直线式移相变压器的多重叠加逆 变系统[J]. 电力自动化设备,2019,39(12):183-188.
 ZHAO Jinghong, MA Yuanzheng, SUN Pan. Multi-module inverter system based on linear phase-shifting transformer[J].
 Electric Power Automation Equipment,2019,39(12):183-188.
- [4]杨旗,班国邦,谢百明,等.移相变压器应用于输电线路在线融 冰方法与仿真研究[J].电网技术,2021,45(8):3349-3355.
 YANG Qi, BAN Guobang, XIE Baiming, et al. Deicing method and simulation of phase-shifting transformer for on-load transmission lines[J]. Power System Technology, 2021,45(8):3349-3355.
- [5] 沈涛.移相变压器在电力系统中的应用研究[D].保定:华北 电力大学,2017.
 SHEN Tao. Application research of phase shifting transformer

SHEN 1ao. Application research of phase shifting transformer in power system [D]. Baoding: North China Electric Power University, 2017.

- [6] KHAN U. Modeling and protection of phase shifting transformers[D]. London; University of Western Ontario, 2013.
- [7] 杨永前,崔勇,杨增辉,等.双芯对称离散型可控移相器的数学 建模[J].陕西电力,2014,42(11):61-67.
 YANG Yongqian, CUI Yong, YANG Zenghui, et al. Modeling of two-core symmetrical discrete thyristor controlled phase shifting transformer[J]. Shaanxi Electric Power,2014,42(11): 61-67
- [8] 高飞,刘欣,王利桐,等.对称双芯移相变压器有载分接开关最大级电压计算方法研究[J].中国电机工程学报,2017,37(7):2110-2119.
 GAO Fei,LIU Xin,WANG Litong, et al. Study on the maximum step voltage calculation method of on-load tap changer

mum step voltage calculation method of on-load tap changer in symmetrical two-core phase shifting transformer [J]. Proceedings of the CSEE,2017,37(7):2110-2119.

- [9]侯炜,邵铃敏,段胜朋,等. 多分支移相变压器差动保护技术研究及应用[J]. 电力自动化设备,2018,38(10):205-209.
 HOU Wei,SHAO Lingmin, DUAN Shengpeng, et al. Research and application of differential protection for multi-branch phase-shifting transformer[J]. Electric Power Automation Equipment,2018,38(10):205-209.
- [10] KHAN U, SIDHU S. A phase-shifting transformer protection technique based on directional comparison approach[J]. IEEE Transactions on Power Delivery, 2014, 29(5):2315-2323.
- [11] 曹虹,王兴国,周泽昕,等. UPFC串联变压器匝间保护新原理研究[J]. 电网技术,2020,44(4):1568-1575.
 CAO Hong,WANG Xingguo,ZHOU Zexin, et al. A novel protection principle for turn-to-turn fault of UPFC series transformer[J]. Power System Technology,2020,44(4):1568-1575.
- [12] SOLIMAN I A, EL-GHANY H A A, AZMY A M. A proposed algorithm for current differential protection of delta hexagonal phase shifting transformer [C] //2018 Twentieth International

Middle East Power Systems Conference. Cairo, Egypt: IEEE, 2018:785-790.

[13] 陈新,姚旭,康小宁.双芯对称离散型可控移相器对纵联保护 的影响分析[J].电力系统保护与控制,2014,42(24):121-125. CHEN Xin,YAO Xu,KANG Xiaoning. Research on the effects of TCPS on pilot protection[J]. Power System Protection and Control,2014,42(24):121-125.

106

- [14] 孟凡刚,骆霁嵘,高蕾,等.基于相分量法的星形自耦变压器全 解耦模型[J].电机与控制学报,2017,21(1):14-21.
 MENG Fangang,LUO Jirong,GAO Lei, et al. Decoupled model of star-connected autotransformer based on phase-coordinate method[J]. Electric Machines and Control,2017,21(1):14-21.
- [15] 陈明,李银红,石东源,等.节点导纳矩阵和阻抗矩阵的互感支路狙整体追加方法[J].电工技术学报,2016,31(21):94-101.
 CHEN Ming, LI Yinhong, SHI Dongyuan, et al. Research on mutual inductance branch building method of node-admittance matrix and node-impedance matrix based on branch group [J]. Transactions of China Electrotechnical Society, 2016, 31 (21):94-101.
- [16] 薛安成,游宏宇,苏大威,等. 基于中位数估计和相分量模型的 输电线路序参数在线抗差辨识[J]. 电力自动化设备,2018,38 (8):88-94.

XUE Ancheng, YOU Hongyu, SU Dawei, et al. On-line robust identification of transmission line's sequence parameter based on median estimation and phase component model [J]. Electric Power Automation Equipment, 2018, 38(8):88-94.

[17] 傅旭. 断相加短路故障计算的等值双端电源相分量法[J]. 电力自动化设备,2010,30(11):57-60.
 FU Xu. Equivalent two-source phase-domain method for open conductor plus short circuit fault calculation[J]. Electric Po-

wer Automation Equipment,2010,30(11):57-60. [18] 吴锦鹏,张波,蒋愉宽,等. 基于相分量模型的变电站短路电流 分流系数计算[J]. 中国电机工程学报,2012,32(1):122-130. WU Jinpeng,ZHANG Bo,JIANG Yukuan, et al. A calculation method of fault current distribution and shunt coefficient in substation based on phase-coordinate model [J]. Proceedings of the CSEE,2012,32(1):122-130.

作者简介:

李晓华(1975—),女,教授,博士研究 生导师,博士,主要研究方向为电力系统故 障分析和继电保护、高压直流输电控制与保 护(**E-mail**:eplxh@scut.edu.cn);

陈镇生(1997—), 男, 硕士研究生, 主 要研究方向为电力系统运行分析与保护 (**E-mail**: zhenshengchen 2021@163.com);

李晓华

罗一杰(1997—),男,硕士研究生,主 要研究方向为电力系统继电保护(E-mail:

yijieluo1997@outlook.com) $_{\circ}$

(编辑 王欣行)

Modeling and application of phase-shifting transformer based on full winding topology structure

LI Xiaohua¹, CHEN Zhensheng¹, LUO Yijie¹, LIU Wei², TU Qingrui²

(1. School of Electric Power, South China University of Technology, Guangzhou 510640, China;

2. Power Dispatching Control Center of Guangdong Power Grid Corporation, Guangzhou 510600, China)

Abstract: For the problem that the existing steady-state mathematical model of phase-shifting transformer cannot be applied to the calculation of electrical quantities of internal and external port faults, its full-phase mathematical model is established based on the phase-component method. Taking symmetrical two-core phase-shifting transformer as an example, the relationship equation between node voltage and current is derived according to its electromagnetic constraint relationship, and then the nodes are combined and grounded by winding topology structure to obtain the admittance matrix of the phase-shifting transformer and the full-phase equivalent circuit model, then the matrix is modified aiming at adapting to the calculation under different fault conditions. Finally, the operating characteristics of symmetrical two-core phase-shifting transformer in different phase sequence networks are analyzed by the proposed model. Comparing the simulative results, it can be seen that the proposed full-phase mathematical model can accurately calculate the electrical quantities of various port faults, and the equivalent phase sequence circuit can effectively reflect the operating characteristics of phase-shifting transformers under different sequence components.

Key words: symmetrical two-core phase-shifting transformer; winding connection; phase-component method; full-phase mathematical model; operating characteristics

注: 以 A 相为例介绍图中各个参数的物理意义, U_{IA}、U_{OA}分别为移相变压器的输入、输出电压; U_{SPA}、U_{P2LA}分别为并联变的输入、输出电压; I_{IA}、I_{OA}分别为输入、输出电流; Z_{SIA}、Z_{S2A}、 Z_{S3A}分别为串联变压器的三个绕组的等值漏抗; U_{A1}、U_{A2}为串联变一次侧绕组的感应电压; U_{A3}、I_{S2A}为串联变二次侧的感应电压与电流; Z_{P1A}、Z_{P2A}分别为并联变满档时的一、二次 侧漏抗; U_{P1A}、U_{P2A}分别为并联变一、二次绕组感应侧电压; I_{P1A}、I_{P2A}分别为并联变一、 二次侧绕组流过的电流; N_{S1A}、N_{PA}分别为串、并联变的变比; D_A为并联变二次侧的接入 绕组匝数与总匝数之比。为绘图清晰,图中相同灰度的点表示相连的电气节点,且用虚线 圈标注了 A 相串并联变的位置。B、C 两相同理。

图 A2 对称运行时 ST-PST 的相量关系图 Fig.A2 Phase relationship diagram for ST-PST in symmetric operation

图 A4 三相并联变及 A 相等效电路图

_

~

Fig.A5 Three-phase series transformer and phase-A equivalent circuit diagram

$$\mathbf{Y}_{S2} = \begin{bmatrix} \frac{Z_{S2B}N_{S2B}^{2} + Z_{S3B}}{KB} & -\frac{N_{S2B}^{2}Z_{S2B} + Z_{S3B}}{KB} - \frac{N_{S1B}N_{S2B}Z_{S2B}}{KB} & \frac{N_{S1B}Z_{S2B}}{KB} & \frac{N_{S1B}Z_{S3B}}{KB} & -\frac{N_{S1B}Z_{S3B}}{KB} & -\frac{N_{S1B}Z_{S3B}}{KB} \\ -\frac{N_{S2B}^{2}Z_{S2B} + Z_{S3B}}{K_{B}} - \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} + \frac{N_{S2B}^{2}Z_{S2B} + Z_{S3B}}{K_{B}} + \frac{N_{S1B}^{2}Z_{S2B} + Z_{S1B}}{K_{B}} - \frac{N_{S1B}Z_{S3B}}{K_{B}} - \frac{N_{S1B}Z_{S3B}}{K_{B}} \\ -\frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} & \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} + \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} & \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} & \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} \\ \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} & \frac{N_{S1B}^{2}Z_{S2B} + Z_{S1B}}{K_{B}} + \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} & \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} & \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} \\ \frac{N_{S1B}Z_{S2B}N_{S2B}}{K_{B}} & -\frac{N_{S1B}Z_{S3B}}{K_{B}} & \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} & \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} & \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} \\ \frac{N_{S1B}Z_{S3B}}{K_{B}} & \frac{N_{S1B}Z_{S3B}}{K_{B}} & \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} & \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} & \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} \\ -\frac{N_{S1B}Z_{S3B}}}{K_{B}} & \frac{N_{S1B}Z_{S3B}}{K_{B}} & \frac{N_{S1B}N_{S2B}Z_{S1B}}{K_{B}} & \frac{N_{S2B}Z_{S1B}}{K_{B}} & \frac{N_{S2B}Z_{S1B}}{K_{B}} & \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} \\ -\frac{N_{S1B}Z_{S3B}}}{K_{B}} & \frac{N_{S1B}Z_{S3B}}{K_{B}} & \frac{N_{S2B}Z_{S1B}}{K_{B}} & \frac{N_{S2B}Z_{S1B}}{K_{B}} & \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}} \\ -\frac{N_{S1B}Z_{S3B}}}{K_{B}} & \frac{N_{S1B}Z_{S3B}}{K_{B}} & \frac{N_{S2B}Z_{S1B}}{K_{B}} & \frac{N_{S2B}Z_{S1B}}{K_{B}} & \frac{N_{S1B}N_{S2B}}{K_{B}} \\ -\frac{N_{S1B}Z_{S3B}}}{K_{B}} & \frac{N_{S1B}Z_{S3B}}}{K_{B}} & \frac{N_{S1B}Z_{S3B}}{K_{B}} & \frac{N_{S1B}N_{S2B}}{K_{B}} & \frac{N_{S1B}N_{S2B}}{K_{B}} \\ -\frac{N_{S1B}Z_{S3B}}}{K_{B}} & \frac{N_{S1B}Z_{S3B}}{K_{B}} & \frac{N_{S2B}Z_{S1B}}{K_{B}} & \frac{N_{S1B}N_{S2B}}{K_{B}} \\ -\frac{N_{S1B}Z_{S3B}}}{K_{B}} & \frac{N_{S1B}Z_{S3B}}}{K_{B}} & \frac{N_{S1B}N_{S2B}}{K_{B}} & \frac{N_{S1B}N_{S2B}}{K_{B}} \\ \frac{N_{S1B}Z_{S3B}}{K_{B}} & \frac{N_{S1B}N_{S2B}}{K_{B}} & \frac{N_{S1B}N_{S2B}}{K_{B}} \\ \frac{N_{S1B}N_{S2B}}{K_{B}} & \frac{N_{S1B}N_{S2B}}{$$

式中: $K_{B} = Z_{S2B}Z_{S3B}N_{S1B}^{2} + Z_{S1B}Z_{S2B}N_{S2B}^{2} + Z_{S1B}Z_{S3B}$, 需要注意的是, Y_{S2} 矩阵中的行列顺序为 5、6、8、11、3, 列数与行数一致。

$$\mathbf{Y}_{53} = \begin{bmatrix} \frac{Z_{52C}N_{52C}^{2} + Z_{53C}}{K_{C}} & -\frac{N_{52C}^{2}Z_{52C} + Z_{53C}}{K_{C}} - \frac{N_{51C}N_{52C}Z_{52C}}{K_{C}} & \frac{N_{51C}Z_{52C}}{K_{C}} & \frac{N_{51C}Z_{53C}}{K_{C}} & -\frac{N_{51C}Z_{53C}}{K_{C}} \\ -\frac{N_{52C}^{2}Z_{52C} + Z_{53C}}{K_{C}} - \frac{N_{51C}N_{52C}Z_{52C}}{K_{C}} + \frac{N_{52C}^{2}Z_{52C} + Z_{53C}}{K_{C}} + \frac{N_{51C}^{2}Z_{52C} + Z_{51C}}{K_{C}} \\ -\frac{N_{51C}N_{52C}Z_{52C}}{K_{C}} & \frac{N_{51C}^{2}Z_{52C} + Z_{51C}}{K_{C}} + \frac{N_{51C}N_{52C}Z_{52C}}{K_{C}} & \frac{N_{51C}N_{52C}Z_{52C}}{K_{C}} \\ -\frac{N_{51C}Z_{52C}N_{52C}}{K_{C}} & -\frac{N_{51C}^{2}Z_{52C} + Z_{51C}}{K_{C}} - \frac{N_{51C}N_{52C}Z_{52C}}{K_{C}} & \frac{N_{51C}N_{52C}Z_{52C}}{K_{C}} \\ -\frac{N_{51C}Z_{52C}N_{52C}}{K_{C}} & -\frac{N_{51C}Z_{52C} + Z_{51C}}{K_{C}} - \frac{N_{51C}N_{52C}Z_{52C}}{K_{C}} & \frac{N_{51C}N_{52C}Z_{52C}}{K_{C}} \\ -\frac{N_{51C}Z_{53C}}}{K_{C}} & \frac{N_{51C}Z_{52C} + Z_{51C}}{K_{C}} - \frac{N_{51C}Z_{53C}}{K_{C}} \\ -\frac{N_{51C}Z_{53C}}{K_{C}} & \frac{N_{51C}Z_{53C}}{K_{C}} - \frac{N_{51C}Z_{53C}}{K_{C}} \\ -\frac{N_{51C}Z_{53C}}}{K_{C}} & \frac{N_{51C}Z_{53C}}{K_{C}} - \frac{N_{51C}Z_{53C}}{K_{C}} \\ -\frac{N_{51C}Z_{53C}}}{K_{C}} & \frac{N_{51C}Z_{53C}}{K_{C}} - \frac{N_{52C}Z_{51C}}{K_{C}} \\ -\frac{N_{51C}Z_{53C}}}{K_{C}} & \frac{N_{52C}Z_{51C}}{K_{C}} \\ -\frac{N_{51C}Z_{53C}}}{K_{C}} \\ -\frac{N_{51C}Z_{53C}}{K_{C}} \\ -\frac{N_{51C}Z_{53C}}{K_{C}} \\ -\frac{N_{51C}Z_{53C}}{K_{C}} \\ -\frac{N_{51C}Z_{53C}}{K_{C}} \\ -\frac{N_{51C}Z_{53C}}{K_{C}} \\ -\frac{N_{51C}Z_{53C}}{K_{C}} \\ -\frac{N_{51C}Z_{53C}}{$$

式中: $K_c = Z_{s2c} Z_{s3c} N_{s1c}^2 + Z_{s1c} Z_{s2c} N_{s2c}^2 + Z_{s1c} Z_{s3c}$, 需要注意的是, Y_{s3} 矩阵中的行列顺序为9、10、12、3、7, 列数与行数一致。

	$\left[\frac{N_{S2A}^2 Z_{S2A} + Z_{S3A}}{K_A}\right]$	$-\frac{N_{\rm S2A}^2 Z_{\rm S2A} + Z_{\rm S3A}}{K_{\rm A}} - \frac{K_{\rm A}}{K_{\rm A}} - \frac{N_{\rm S1A} N_{\rm S2A} Z_{\rm S2A}}{K_{\rm A}}$	0	$\frac{N_{\rm S1A}Z_{\rm S2A}N_{\rm S2A}}{K_{\rm A}}$	0	0	$\frac{N_{\rm SIA}Z_{\rm SIA}}{K_{\rm A}}$	0	0	0	$-\frac{N_{SIA}Z_{SIA}}{K_A}$	0	
	$\frac{-\frac{N_{S1A}N_{S2A}Z_{S2A}}{K_{A}}}{-\frac{N_{S2A}^{2}Z_{S2A}+Z_{S3A}}{K_{A}}}$	$\frac{\frac{N_{SIA}N_{S2A}Z_{S2A}}{K_{A}} + \frac{N_{S2A}^{2}Z_{S1A} + Z_{S3A}}{K_{A}} + \frac{N_{S1A}^{2}Z_{S1A} + Z_{S3A}}{K_{A}} + \frac{N_{S1A}^{2}Z_{S2A} + Z_{S1A}}{K_{A}} + \frac{N_{S1A}N_{S2A}Z_{S2A}}{K_{A}} + \frac{N_{S1}N_{S1}N_{S1}}{K_{A}} + \frac{N_{S1}N_$	0	$-\frac{\frac{N_{S1A}^{2}Z_{S2A} + Z_{S1A}}{K_{A}} - \frac{N_{S1A}N_{S2A}Z_{S2A}}{K_{A}}}{K_{A}}$	0	0	$\frac{N_{\rm SDA}Z_{\rm SDA}}{K_{\rm A}} - \frac{N_{\rm SDA}Z_{\rm SDA}}{K_{\rm A}}$	0	0	0	$\frac{\frac{N_{\rm SLA}Z_{\rm SLA}}{K_{\rm A}}}{\frac{N_{\rm SLA}Z_{\rm SLA}}{K_{\rm A}}}$	0	
	0	0	$\frac{\frac{N_{\rm S1B}^2 Z_{\rm S1B} + Z_{\rm S1B} N_{\rm S2B}^2}{K_{\rm B}} + }{\frac{N_{\rm S1C}^2 Z_{\rm S1C} + Z_{\rm S1C} N_{\rm S2C}^2}{K_{\rm C}}}$	0	$-\frac{N_{_{\rm S1B}}Z_{_{\rm S3B}}}{K_{_{\rm B}}}$	$\frac{N_{\rm S1B}Z_{\rm S3B}}{K_{\rm B}}$	$-\frac{N_{\rm SIC}^2 Z_{\rm SIC} + Z_{\rm SIC} N_{\rm SIC}^2}{K_{\rm C}}$	$\frac{N_{\rm S2B}Z_{\rm S1B}}{K_{\rm B}}$	$\frac{N_{\rm SH}Z_{\rm SSC}}{K_{\rm c}}$	$\frac{\frac{N_{\rm S2C}Z_{\rm S1C}}{K_{\rm c}} - \frac{N_{\rm S1C}Z_{\rm S3C}}{K_{\rm c}}$	$\frac{-\frac{N_{S1B}^{2}Z_{S3B}}{K_{B}}-}{\frac{Z_{S1B}N_{S2B}}{K_{B}}}$	$-\frac{N_{\rm sxc}Z_{\rm stc}}{K_{\rm c}}$	
	$\frac{N_{S1A}Z_{S2A}N_{S2A}}{K_A}$	$-\frac{\frac{N_{S1A}N_{S2A}Z_{S2A}}{K_{A}}}{\frac{N_{S1A}N_{S2A}Z_{S2A}}{K_{A}}}$	0	$\frac{N_{\rm S1A}^2 Z_{\rm S2A} + Z_{\rm S1A}}{K_{\rm A}}$	0	0	$-\frac{N_{\rm S2A}Z_{\rm S1A}}{K_{\rm A}}$	0	0	0	$\frac{N_{\rm S2A}Z_{\rm S1A}}{K_{\rm A}}$	0	
	0	0	$-\frac{N_{\rm SIB}Z_{\rm SIB}}{K_{\rm B}}$	0	$\frac{Z_{\rm S2B}N_{\rm S2B}^2+Z_{\rm S3B}}{K_{\rm B}}$	$\frac{-\frac{N_{\rm S2B}^2 Z_{\rm S2B} + Z_{\rm S3B}}{K_{\rm B}} - }{\frac{N_{\rm S1B}N_{\rm S2B}Z_{\rm S2B}}{K_{\rm B}}}$	0	$\frac{N_{\rm S1B}Z_{\rm S2B}N_{\rm S2B}}{K_{\rm B}}$	0	0	$\frac{N_{\rm SIB}Z_{\rm SIB}}{K_{\rm B}}$	0	(A5)
Y _S =	0	0	$\frac{N_{\text{SIB}}Z_{\text{SIB}}}{K_{\text{B}}} - \frac{N_{\text{SIB}}Z_{\text{SIB}}}{K_{\text{B}}}$	0	$\frac{-\frac{N_{\rm S2B}^2 Z_{\rm S2B} + Z_{\rm S3B}}{K_{\rm B}} - \frac{1}{K_{\rm B}}}{K_{\rm B}}$	$\frac{\frac{N_{S1B}N_{S2B}Z_{S2B}}{K_B} + \frac{K_B}{K_B} + \frac{N_{S1B}^2Z_{S2B} + Z_{S3B}}{K_B} + \frac{N_{S1B}^2Z_{S2B} + Z_{S1B}}{K_B} + \frac{N_{S1B}N_{S2B}Z_{S2B}}{K_B} + \frac{N_{S1B}N_{S2}}{K_B} + \frac{N_{S1B}N_{S2}}{K$	0	$-\frac{\frac{N_{S1B}^2 Z_{S2B} + Z_{S1B}}{K_B}}{-\frac{N_{S1B} N_{S2B} Z_{S2B}}{K_B}}$	0	0	$\frac{\frac{N_{\rm SB}Z_{\rm SB}}{K_{\rm B}}}{\frac{N_{\rm SB}Z_{\rm SB}}{K_{\rm B}}}$	0	
	$\frac{N_{S1A}Z_{S3A}}{K_A}$	$\frac{\frac{N_{\rm S2A}Z_{\rm S1A}}{K_{\rm A}}}{\frac{N_{\rm S1A}Z_{\rm S1A}}{K_{\rm A}}}$	$\frac{N_{\rm S1C}^2 Z_{\rm S3C} + Z_{\rm S1C} N_{\rm S2C}^2}{K_{\rm C}}$	$-\frac{N_{\rm S2A}Z_{\rm S1A}}{K_{\rm A}}$	0	0	$\frac{\frac{N_{\rm S1A}^2 Z_{\rm S1A} + Z_{\rm S1A} N_{\rm S2A}^2}{K_{\rm A}}}{+\frac{N_{\rm S1C}^2 Z_{\rm S1C} + Z_{\rm S1C} N_{\rm S2C}^2}{K_{\rm C}}}$	0	$-\frac{N_{\rm SIC}Z_{\rm SIC}}{K_{\rm C}}$	$\frac{\frac{N_{\rm SIC}Z_{\rm SIC}}{K_{\rm C}}}{\frac{N_{\rm SIC}Z_{\rm SIC}}{K_{\rm C}}} -$	$\frac{\frac{N_{SIA}^2 Z_{SIA}}{K_A}}{\frac{Z_{SIA}N_{SZA}^2}{K_A}}$	$\frac{N_{\rm SDC}Z_{\rm SDC}}{K_{\rm C}}$	
	0	0	$\frac{N_{\rm S2B}Z_{\rm S1B}}{K_{\rm B}}$	0	$\frac{N_{\rm S1B}Z_{\rm S2B}N_{\rm S2B}}{K_{\rm B}}$	$-\frac{\frac{N_{S1B}^{2}Z_{S2B} + Z_{S1B}}{K_{B}}}{\frac{N_{S1B}N_{S2B}Z_{S2B}}{K_{B}}}$	0	$\frac{N_{\rm S1B}^2 Z_{\rm S2B} + Z_{\rm S1B}}{K_{\rm B}}$	0	0	$-\frac{N_{\rm S2B}Z_{\rm S1B}}{K_{\rm B}}$	0	
	0	0	$\frac{N_{ssc}Z_{ssc}}{K_c}$	0	0	0	$-\frac{N_{\rm SHC}Z_{\rm SSC}}{K_{\rm C}}$	0	$\frac{Z_{ssc}N_{ssc}^2+Z_{ssc}}{K_c}$	$-\frac{N_{\rm SSC}^2 Z_{\rm SSC} + Z_{\rm SSB}}{K_{\rm C}} - \frac{N_{\rm SSC} N_{\rm SSC} Z_{\rm SSC}}{K_{\rm C}} - \frac{N_{\rm SSC} N_{\rm SSC} Z_{\rm SSC}}{K_{\rm C}} - \frac{N_{\rm SSC} N_{\rm SSC} N_{\rm SSC}}{K_{\rm C}} - \frac{N_{\rm SSC} N_{\rm SSC}}{K_{\rm C}} - \frac{N_{\rm SSC} N_{\rm SSC}}{K_{\rm C}} - \frac{N_{\rm SSC} N_{\rm SSC}}{K_{\rm SSC}} - \frac{N_{\rm SSC}$	- 0	$\frac{N_{sic}Z_{sac}N_{sac}}{K_c}$	
	0	0	$\frac{N_{\rm SSC}Z_{\rm SIC}}{K_{\rm C}} - \frac{N_{\rm SIC}Z_{\rm SIC}}{K_{\rm C}}$	0	0	0	$\frac{N_{\rm sic}Z_{\rm sic}}{K_{\rm c}} - \frac{N_{\rm sic}Z_{\rm sic}}{K_{\rm c}}$	0	$\frac{-\frac{N_{8X}^2 Z_{32C} + Z_{X00}}{K_c} - \frac{K_c}{N_{S1C} N_{S2C} Z_{S2C}}}{K_c}$	$\frac{\frac{N_{SUC}N_{SCC}Z_{SSC}}{K_c} + \frac{K_c}{K_c} + \frac{N_{SUC}^2Z_{SSC} + Z_{SSC}}{K_c} + \frac{N_{SUC}^2Z_{SSC} + Z_{SUC}}{K_c} + \frac{N_{SUC}N_{SSC}Z_{SSC}}{K}$	0	$-\frac{N_{\rm sic}^2 Z_{\rm sxc} + Z_{\rm sic}}{\frac{K_{\rm c}}{N_{\rm sic} N_{\rm sxc} Z_{\rm sxc}}}$	
	$-\frac{N_{S1A}Z_{S3A}}{K_A}$	$\frac{\frac{N_{\text{S1A}}Z_{\text{S3A}}}{K_{\text{A}}} - \frac{N_{\text{S2A}}Z_{\text{S1A}}}{K_{\text{A}}}$	$-\frac{N_{\rm S1B}^2 Z_{\rm S1B} + Z_{\rm S1B} N_{\rm S2B}^2}{K_{\rm B}}$	$\frac{N_{\rm S2A}Z_{\rm S1A}}{K_{\rm A}}$	$\frac{N_{\rm SIB}Z_{\rm SIB}}{K_{\rm B}}$	$\frac{\frac{N_{\text{S2B}}Z_{\text{S1B}}}{K_{\text{B}}} - \frac{N_{\text{S1B}}Z_{\text{S3B}}}{K_{\text{B}}}$	$-\frac{N_{\rm S1A}^2 Z_{\rm S1A} + Z_{\rm S1A} N_{\rm S2A}^2}{K_{\rm A}}$	$-\frac{N_{\rm S2B}Z_{\rm S1B}}{K_{\rm B}}$	0	0	$\frac{N_{\rm S1A}^2 Z_{\rm S3A} + Z_{\rm S1A} N_{\rm S2A}^2}{K_{\rm A}} + \\ \frac{N_{\rm S1B}^2 Z_{\rm S3B} + Z_{\rm S1B} N_{\rm S2B}^2}{K_{\rm B}}$	0	
	0	0	$-\frac{N_{\rm SX}Z_{\rm SIC}}{K_{\rm C}}$	0	0	0	$\frac{N_{\rm sx}Z_{\rm ssc}}{K_{\rm c}}$	0	$\frac{N_{s1c}Z_{s1c}N_{s1c}}{K_c}$	$-\frac{\frac{N_{\rm SIC}^2 Z_{\rm SIC} + Z_{\rm SIC}}{K_{\rm C}}}{\frac{N_{\rm SIC} N_{\rm SIC} Z_{\rm SIC}}{K_{\rm C}}}$	- 0	$\frac{N_{\rm SHC}^2 Z_{\rm SHC} + Z_{\rm SHC}}{K_{\rm C}}$	

$$\boldsymbol{Y}_{\text{PST}} = \begin{bmatrix} Y_{1_{-1}} & Y_{1_{-2}} & \dots & Y_{1_{-12}} \\ Y_{2_{-1}} & Y_{2_{-2}} & \dots & Y_{2_{-12}} \\ \vdots & \vdots & \ddots & \vdots \\ Y_{12_{-1}} & Y_{12_{-2}} & \dots & Y_{12_{-12}} \end{bmatrix}$$
(A6)

$$\vec{x}_{\rm c} \doteq : \quad Y_{1_{-}} = \frac{N_{\rm S12}^2 Z_{\rm S3B} + Z_{\rm S1B} N_{\rm S2B}^2}{K_{\rm A}} ; \quad Y_{2_{-2}} = \frac{N_{\rm S1A} N_{\rm S2A} Z_{\rm S2A}}{K_{\rm A}} + \frac{N_{\rm S2A}^2 Z_{\rm S2A} + Z_{\rm S3A}}{K_{\rm A}} + \frac{N_{\rm S1A}^2 Z_{\rm S2A} + Z_{\rm S3A}}{K_{\rm A}} + \frac{N_{\rm S1A}^2 Z_{\rm S2A} + Z_{\rm S3A}}{K_{\rm A}} + \frac{N_{\rm S1A}^2 Z_{\rm S2A} + Z_{\rm S3A}}{K_{\rm A}} + \frac{N_{\rm S1A}^2 Z_{\rm S2A} + Z_{\rm S1A}}{K_{\rm A}} + \frac{N_{\rm S1A}^2 Z_{\rm S1A} + \frac{N_{\rm S1A}^2 Z_{\rm S2A}}{K_{\rm S1A}} + \frac{N_{\rm S$$

$$\begin{split} Y_{6_{-6}} &= \frac{N_{S1R}N_{S2R}Z_{S2R} + N_{S2R}^{2}Z_{S2R} + Z_{S3R}}{K_{B}} + \frac{N_{S1R}^{2}Z_{S2R} + Z_{S1R}}{K_{B}} + \frac{N_{S1R}^{2}Z_{S2R} + Z_{S1R}}{K_{B}} + \frac{N_{S1R}^{2}Z_{S2R} + Z_{S1R}}{K_{B}} + \frac{N_{S1R}^{2}Z_{S2R} + Z_{S1R}}{K_{B}} + \frac{N_{S1R}^{2}Z_{S2R} + Z_{S1R}}{K_{R}} + \frac{N_{S1R}^{2}Z_{S2R} + Z_{S1R}}{K_{C}} + \frac{N_{S1R}^{2}Z_{S2R} + Z_{S1R}}{K_{R}} + \frac{N_{S1R}^{2}Z_{S2R} + Z_{S1R}}}{K_{R}} + \frac{N_{S1R}^{2}Z_{S2R} + Z_{S1R}}{K_{$$

注:图中导纳值与 Y_{PST}中的元素相对应,接地导纳为并联变的等效导纳值。 图 A7 ST-PST 的全相等效电路模型 Fig.A7 Full-phase equivalent circuit model of ST-PST

Table AT Fliase-slift	lig transformer tech	linear parameters		
参数	串联变参数值	并联变参数值		
额定容量 S _N /(MV A)	74.75	73.14		
额定电压比/kV	$28.75 \times 2/185$	130/107		
额定电流 I N/kA	1.3/0.39	0.56/0.68		
短路阻抗 Vs/%	0.322	0.022		
额定电压 $U_{\rm N}/{ m kV}$	22	20		
三相容量 S _{3N} /(MV A)	22	25		
档数 D	±	10		
最大移相角 <i>α</i> _{max} /()	2	5		
频率 f/Hz	5	0		

表 A1 ST-PST 技术参数 Table A1 Phase-shifting transformer technical parameters