Vol.43 No.7 Jul. 2023

基于融合FCN-TCN-LSTM的工业大用户 可调节潜力分析模型

李 彬¹,明 雨¹,郝一浩¹,陈宋宋^{2,3},王隗东^{2,3}

(1. 华北电力大学 电气与电子工程学院,北京 102206;2. 需求侧多能互补优化与供需互动技术北京市重点实验室, 北京 100192;3. 中国电力科学研究院有限公司,北京 100192)

摘要:综合考虑调控成本和价格激励的影响,开展工业大用户双向可调节潜力的分时段分析是提升新型电力 系统负荷管理能力的关键。建立一种基于融合全卷积网络、时域卷积网络、长短期记忆网络的模型,以分析 工业大用户可调节潜力。建立全卷积网络数据集重构模型,并基于典型负荷特性指标实现对具有高可调节 潜力负荷数据的工业大用户的遴选;以高可调节潜力数据集为基础,建立改进时域卷积网络模型,对工业大 用户进行调控成本影响下的可调节潜力分析测算。基于实际数据对所提模型进行验证,算例结果表明,所提 模型可分析出工业大用户典型设备的可调节潜力,且模型的稳定性与精确度较高。

关键词:需求响应;可调节潜力;工业设备调控;全卷积网络;时间卷积网络;长短期记忆网络 中图分类号:TM73 **文献标志码:**A DOI:10.16081/j.epae.202209028

0 引言

随着新型电力系统建设进程的不断推进,仅考 虑电源侧、电网侧的调节资源已难以满足系统稳定 运行的需求。需求侧资源主动参与电网调节可以有 效缓解电源侧、电网侧的调节压力,稳定电网系统供 需平衡,因而深度挖掘需求侧资源的可调节潜力成 为必然[1-2]。需求侧资源能够快速响应新能源短周 期尺度的调节需求,2022年5月国家发展改革委、国 家能源局联合发布的《关于促进新时代新能源高质 量发展的实施方案》,要求全面提升电力系统的调节 能力与灵活性,加快构建以新能源为主体的新型电 力系统^[3]。需求响应(demand response, DR)是需求 侧资源参与电网灵活互动的重要途经,工业大用户 是组成需求侧资源的主体,在参与需求响应的用户 中,工业大用户负荷占95%以上[4-5],因此,分析工业 大用户的可调节潜力可以提高新型电力系统负荷管 理能力和系统的稳定性[6]。

目前,针对工业大用户的可调节潜力分析方法 有2种:一种为数据分析法,该方法通过对比节假日 时段、检修时段、高峰时段的工业大用户工作情况得

收稿日期:2022-06-02;修回日期:2022-09-20 在线出版日期:2022-10-10 基金项目:国家电网有限公司总部科技项目(分布式"源荷储"

资源聚合调控通信技术研究及应用)(5700-202258216A-1-1-ZN)

Project supported by the Science and Technology Program of Headquarters of State Grid Corporation of China (Research and Application of Distributed Resource Aggregation Regulation Communication Technology for "Source, Load and Storage")(5700-202258216A-1-1-ZN) 出其轮休潜力、检修潜力和避峰潜力,再通过数学建 模方式对可调节潜力进行量化^[78];另一种为聚类分 组分析法,该方法基于调研方式得出工业大用户的响 应次数、响应容量等自身特性和温度、湿度等自然环 境特性,利用机器学习方法对工业大用户进行分类, 得出具有可调节潜力的工业大用户类别^[9-10]。利用 这2种方法可进行工业大用户调节能力的初筛,但 现有相关研究未综合考虑调控成本、价格激励等影 响来开展工业大用户双向可调节潜力的分时段分析。

人工智能技术发展快速,已在需求响应业务中 得到广泛应用^[11],在工商业^[12]、居民^[13]的可调节潜 力分析中发挥着重要作用。深度学习分类模型可以 基于负荷特性指标映射对工业大用户用电数据进行 分类,构建出具有高可调节潜力的工业用电数据集。 时序处理模型可以基于工业大用户调控成本通过卷 积计算方式对工业设备进行可调节潜力分析,得到 与真实数据对比后的可调节潜力结果。

为提取工业大用户的可调节特性,得到调控成本影响下的分时段设备可调节潜力结果,本文首先利用全卷积网络(fully convolutional network,FCN)对工业大用户数据集进行重构,提取具有可调节潜力的时段,得到高可调节潜力数据集,然后建立改进的时域卷积网络(temporal convolutional network,TCN),以窗口形式将设备用电数据与对应时段的调控成本输入模型,利用TCN对长时段时序数据关联信息的强大挖掘能力^[14],以历史响应数据和对应调控成本为基准,对不同电价下调控成本对应的设备负荷通过模型进行拟合,计算出不同时段下的设备调节用电结果,再通过与实际用电的对比得出设备可调节潜力范围。改进后的TCN同时可以对自备

电厂发电数据进行拟合,得到对应时段的发电占比, 并提升数据的计算能力和修正能力。

1 工业设备建模分析

1.1 主要生产设备

工业大用户的主要生产设备负荷占用电量的 80%左右,这些设备主要包括持续型冲击负荷设备 与间接型冲击负荷设备,对负荷模型进行分析是工 业设备可调节潜力分析的基础。

1.1.1 持续型冲击负荷设备

持续型冲击负荷设备是工业生产的关键,典型 设备包括电动机等,这类设备负荷的功率波动极其 强烈,且波动周期短,波动功率大,这类设备具有极 高的可调节潜力。根据持续型冲击负荷设备的负荷 特性对其进行建模,表达式如式(1)所示,负荷仿真 图如附录A图A1所示。

$$P_{\rm ss}(\tau) = \begin{cases} 0 & \tau = \tau_{\rm off} \\ P_{\rm ess} / \Delta \tau_{\rm ss} & \tau = \tau_{\rm on} \end{cases}$$
(1)

式中: $P_{ss}(\tau)$ 为持续型冲击负荷设备在时段 τ 的功率; τ_{ss} 为关停时段; τ_{ss} 为开启时段; P_{ss} 为持续型冲击负荷设备的额定功率; $\Delta \tau_{ss}$ 为持续型冲击负荷设备从开始工作到达到额定功率所需要的时间。在需求响应期间,可以根据负荷不同的调节需求利用持续型冲击负荷的波动性对设备生产或停止编排特定时段,以完成负荷调节。

1.1.2 间接型冲击负荷设备

间接型冲击负荷是工业设备负荷中的典型负荷,典型设备包括电弧炉等,这类设备负荷具有间接 型波动特性,波动功率大。根据间接型冲击负荷设 备的工作特性与工作流程对其进行建模^[15],表达式 如式(2)所示,负荷仿真图如附录A图A2所示。

$$P_{is}(t) = \begin{cases} 0 & t \leq t_{ison}, t > t_{isoff} \\ \frac{P_{eis}}{\Delta t_{up}} (t - t_{ison}) & t_{ison} < t \leq t_{ison} + \Delta t_{up} \\ (1 + \alpha(t))P_{eis} & t_{ison} + \Delta t_{up} < t \leq t_{isoff} - \Delta t_{down} \\ \frac{P_{eis}}{\Delta t_{down}} (t_{off} - t) & t_{isoff} - \Delta t_{down} < t \leq t_{isoff} \end{cases}$$
(2)

式中: $P_{is}(t)$ 为间接型冲击负荷设备在时刻t的功率; t_{ison} 为间接型冲击负荷设备的通电时刻; P_{eis} 为间接 型冲击负荷设备的额定功率; Δt_{up} 为间接型冲击负 荷设备从通电到达到额定功率所需要的时间; $\alpha(t)$ 为稳态运行时间接型冲击负荷设备在时刻t的功率 波动; t_{isoff} 为间接型冲击负荷设备的断电时刻; Δt_{down} 为间接型冲击负荷设备从断电到功率降为0的时 间。这类设备在完成任务后会被中断送电,这部分 可调负荷取决于前序工艺的进料速度与后序工艺的 生产进度,因此,可对这类设备前后时段的生产编排 预案,在需求响应期间,通过调整设备前后生产节奏 完成用电设备调控。

1.2 辅助生产设备

辅助生产设备是辅助主要生产设备工作的设备,其工作为完成原料的搬运、排风等任务,这类设备负荷约占工厂用电的10%,对这类设备进行建模,表达式如式(3)所示,负荷仿真图如附录A图A3所示。

$$P_{s}(t) = \begin{cases} P_{sn} & t \leq t_{off}, t > t_{on} + t_{2} \\ P_{sn} - k_{1}(t - t_{off}) & t_{off} < t \leq t_{off} + t_{1} \\ P_{s1} & t_{off} + t_{1} < t \leq t_{on} \\ P_{s1} + k_{2}(t - t_{on}) & t_{on} < t \leq t_{on} + t_{2} \end{cases}$$
(3)

式中:P_s(t)为辅助生产设备在时刻t的功率;P_{sn}为辅助生产设备的额定功率;t_{on}、t_{off}分别为辅助生产设备的开启、关闭时刻;t₁、t₂分别为辅助生产设备的功率下降、爬升时间;k₁、k₂分别为辅助生产设备功率降低、升高的爬坡速度;P_{s1}为调整功率。辅助生产设备只对工业材料的生产进行辅助,调控稳定性高,若工厂需紧急调整用电负荷,则可首先对辅助生产设备进行调整,再按照生产流程对主要生产设备进行缓慢调控。

1.3 调控成本

工业企业经济成本分为固有成本和可变成本, 固有成本为控制装置的一次投资成本,根据企业具体设备确定,可变成本为设备负荷在参与调节的过程中对工业生产造成的产业影响。由于不同企业设备的品牌和质量不同,因此,本文只考虑工业企业的可变成本。根据工业大用户参与电网向上或者向下调节的不同方向,将经济成本模型分为向下调节成本模型。

向下调节成本模型为:

$$E_{\rm d} = (\rho_{\rm s} - \rho_{\rm c})/F_{\rm P} \tag{4}$$

式中:*E*_d为向下调节成本; *ρ*_s为负荷单位工业产品 售价; *ρ*_s为负荷单位工业产品生产成本; *F*_P为工业 产品单位产量耗电量。

向上调节成本模型为:

$$E_{\rm u} = \left[\lambda^{\rm b} (l_{\rm u} - l_{\rm all}) + \lambda^{\rm s} l_{\rm all} \right] / l_{\rm u} \tag{5}$$

式中:*E*_u为向上调节成本;λ^b为购电电价;*l*_u为向上 调节总电量;*l*_{all}为对应时段下的全部发电量;λ^{*}为自 备电厂发电成本。

调控成本是反映工业企业参与需求响应意愿的 重要组成部分,通过电价激励工业大用户参与需求 响应来进行负荷调节,是提高工业大用户用电效率、 缓解电网用电高峰压力的重要手段,调控成本是 对工业负荷进行可调节潜力分析的重要影响因素。 经济效益是工业大用户参与需求响应的第一因素, 也是影响工业大用户用电走向的重要因素,工业企 业经济效益直接影响该企业参与需求响应后的可调 节潜力。将调控成本作为影响因素对工业企业典型 设备进行可调节潜力测算,可得到准确测算结果。

2 基于FCN的高可调节潜力数据集重构

2.1 FCN时序提取

本文以各类负荷特性指标为依据,以典型工业 大用户用电负荷数据为基础,通过建立FCN提取工 业大用户的潜力时序数据。

负荷特性指标如附录 B 表 B1 所示。根据表中 指标数据计算工业负荷特征指标值,对工业大用户 进行负荷数据集重构。在负荷特性指标的映射下, 原数据中的负荷数据点经卷积、池化后通过多分类 层得到遴选数据点,在全部样本数据分类完成后,通 过重组得到工业大用户高可调节潜力数据集。FCN 卷积公式为:

$$\boldsymbol{y}^{n} = \boldsymbol{v}_{u,v} \left(\left\{ X_{v_{i} + \delta_{i}, v_{j} + \delta_{j}} \right\}, 0 \leq \delta_{i}, \delta_{j} < u \right)$$
(6)

式中: y^n 为经卷积运算后提取的用电数据,n为数据 点总数; $v_{u,v}$ 为确定层的类型,如卷积、平均池化的矩 阵乘法、最大池化的空间最大值或激活函数的元素 非线性,u为卷积核限值,v为采样因子; $X_{v,t\delta,v,t\delta}$ 为第 i,j个数据点经对应采样因子进行卷积运算后的值, v_i,v_j 分别为第i,j个数据点对应的采样因子, δ_i,δ_j 分 别为一次卷积操作对第i,j个数据点所使用的卷积 核大小,即一次卷积操作所选取的卷积系数。

2.2 工业时序数据集重构

数据集重构示意图如图1所示。基于原始工业 大用户数据计算表B1中的负荷特性指标,将得到的 指标值作为特征输入,通过独热编码得到编码结果 并将其作为标签输入FCN模型进行卷积,池化后经 多分类层得到高可调节潜力数据点,将遴选出的数 据进行重新组合,构建出高可调节潜力数据集。

图1 数据集重构示意图

数据集重构并非创造新的数据点,而是对工业 大用户实际用电数据的重新组合。工业大用户数据 量庞大,用电情况多样,用户具有可调节潜力的数据 分散,数据集重构可对这些数据进行遴选,重新组合 后的高可调节潜力数据集为分析计算调控成本影响 下的各时段可调节潜力提供了数据基础。

3 基于TCN和长短期记忆网络的典型工业 可调节负荷潜力分析模型

TCN能捕捉时间序列的复杂组合模式,并且对时延具有鲁棒性^[16]。根据对工业设备的建模分析可知,主要生产设备与辅助生产设备模型均为时间系数下的数学模型,且经济效益模型是通过对时间进行累计而得到的,因此,选取TCN对工业设备负荷进行可调节潜力分析是具有可靠性的。

3.1 TCN

TCN整体结构如附录A图A4所示,TCN由残差链接结构堆叠而成。工业典型用电设备模型是以时间为变量的函数,调控后设备负荷的变化与调控前设备的用电情况密切相关,TCN利用因果卷积来保证日前输出结果不会用到未来的信息,扩张卷积使TCN卷积核有更大的感受野,从而可以拟合更多的历史负荷数据,保证工业企业可调节潜力分析结果的准确性。

TCN 的卷积网络结构如附录 A 图 A5 所示。扩 张卷积计算公式为:

$$z_{i}^{n} = \left(f *_{d} y\right)_{i}^{n} = \sum_{c=0}^{s-1} f y_{i-d \cdot c}^{n}$$
(7)

式中: z_i^n 为在FCN遴选后的第i个数据点 y_i^n 处的卷积 结果; $(f*_a y)_i^n$ 表示f对设备历史数据进行卷积,f为 TCN滤波器系数,d为扩张系数,"*"表示卷积;s为卷 积核尺寸; y_{i-de}^n 为扩张卷积前的第i个数据。

输入数据经1个隐藏层卷积后,d就会以指数 形式增长1次,多层卷积计算使得TCN获得更大的 感受野,图A5中第一层感受野为2,第二层感受野 为3,依此增加,这使得TCN能够更精确地捕捉到负 荷输入序列时间间隔较长的数据之间的影响关系。 每一层都会进行卷积计算,经过多层卷积计算后输 出卷积结果,感受野r的计算公式如式(8)所示。

$$r = (s-1)d+1$$
 (8)

残差链接结构如附录A图A6所示,残差链接由 TCN卷积层、权重归一层、激活层、正则化层的2轮 结构连接后再通过一维卷积连接输出构成,一维卷 积的作用是保证在输入通过2轮结构后负荷的输 入、输出张量相同。

3.2 泄露性线性单元与高斯误差线性单元

为将自备电厂发电情况输入模型进行可调节潜 力分析,并与工业设备用电情况的可调节潜力进行 区分,将自备电厂发电数据以负数形式进行输入,但 TCN模型会自动忽略负数形式的发电数据以快速收 敛,因此,本文引入泄露性修正线性单元对发电数据 进行参数赋值,使得自备电厂发电数据可以与工业 设备用电数据同时进行计算,从而得到分时段下的 设备调控测算结果。泄露性线性单元公式为:

$$y_i^n = \begin{cases} y_i^n & y_i^n \ge 0\\ \frac{l_i^n}{a_i} & l_i^n < 0 \end{cases}$$
(9)

式中:*lⁱ*为第*i*个发电数据;*a*_i为对应第*i*个发电数据 的固定参数。因为TCN由多层残差链接构成,所以 要在各层残差链接中引入泄露性修正单元,在赋予 发电数据参数后对其进行单独计算,并分时段得到 发电结果。

为使模型能高效快速地拟合不同时段下的设备 用电数据并且对输入的变化有高敏感度,本文引入高 斯误差线性单元(Gaussian error linear unit,GELU)。 GELU可以对设备输入数据附加掩膜,掩膜是随机 输入的,这样使得TCN模型能够提高泛化能力,进 而对输入数据的变化更加敏感。GELU的计算公式 如式(10)所示,*G*(·)表示根据概率对输入负荷数据 附加掩膜。

$$G(y_i^n) = 0.5y_i^n \left\{ 1 + \tanh\left\{\sqrt{2/\pi} \left[y_i^n + 0.045(y_i^n)^3 \right] \right\} \right\} (10)$$

3.3 滑动窗口输入与训练优化

为增强调控成本与负荷调控的拟合,本文引入 对应调控时段的滑动窗口,如附录A图A7所示。式 (11)为低谷时段滑动窗口输入,其长度为相应时段 下15d内的数据点长度,对应生产足量产品入库的 周期。通过将数据按照滑动窗口形式输入可以将调 控成本与设备用电情况进行统一,便于TCN提取时 序特征进行模型训练。

$$\begin{cases} \boldsymbol{W}_{1} = [\boldsymbol{y}^{1}, \boldsymbol{y}^{2}] \\ \boldsymbol{y}^{1} = [\boldsymbol{y}_{t-1}^{1}, \boldsymbol{y}_{t-2}^{1}, \cdots, \boldsymbol{y}_{t-540}^{1}] \\ \boldsymbol{y}^{2} = [\boldsymbol{y}_{t-1}^{2}, \boldsymbol{y}_{t-2}^{2}, \cdots, \boldsymbol{y}_{t-540}^{2}] \end{cases}$$
(11)

式中: W_1 为对应时段输入窗口; y^1 为低谷时段的设备用电功率, 对应15 d内的全部负荷; y^2 为对应负荷在15 d内的向上调控成本; y_{t-h}^1 、 y_{t-h}^2 ($h=1,2,\cdots$, 540)分别为低谷时段 t-h时刻的设备用电功率、对应负荷的向上调控成本。高峰时段与平时段进行相同的处理。

工业大用户负荷数据量庞大,当利用TCN对负 荷进行可调节潜力评估,在负荷数据变化程度较大 时,由于学习率过大,TCN无法正确拟合负荷的陡增 或者陡降,使得评估结果误差增大,因此,本文添加 学习率动态调整模块,使得TCN灵活处理工业用电 各时段数据,跳出局部最优点进行数据拟合。同时, 由于在模型训练得到最优值后,精度无法进一步增 加,为节约计算资源,本文添加训练提前终止结构来 缩短模型训练时间。

3.4 长短期记忆网络短时修正

长短期记忆网络(long short-term memory network,LSTM)由于其遗忘门、输入门、输出门的控制 配合以及反向传播学习的特性,在短时间序列的学 习方面具有优势^[17]。短时间内,用电设备间的相互 联系是影响负荷调控的主要因素,因此,本文利用 LSTM 的门限单元结构中的遗忘门特性来捕捉时序 数据中的短期依赖关系,对工业设备用电情况进行 短时修正,有效减小潜力分析误差。LSTM单元的遗 忘门和 Cell 单元的计算公式分别如式(12)与式(13) 所示。

$$f_t = \sigma \left(W_f \left[h_{t-1}, y_t \right] + b_f \right)$$
(12)

$$C_t = f_t C_{t-1} + i_t \tilde{C}_t \tag{13}$$

式中: f_t 为t时刻遗忘门的输出; $\sigma(\cdot)$ 为Sigmoid函数; W_t 为遗忘门的权重; h_{t-1} 为t-1时刻设备短时用电信号; y_t 为t时刻的设备用电功率; b_t 为变换偏执; C_t 为t时刻Cell单元输出; C_{t-1} 为t-1时刻Cell单元中用电设备的短时用电信息; i_t 为t时刻决定新信息保留程度的变量; \tilde{C}_t 为t时单元核中新输入的设备用电信息。LSTM会记忆用电设备间短时间内的联系,对TCN结果进行短时误差修正。

3.5 用电设备功率约束

用电设备功率约束如附录B式(B1)—(B5)所示。设主要生产设备状态系数为 $\mu_{m,t}$,辅助生产设备状态系数为 $\mu_{m,t}$,辅助生产设备状态系数为 $\mu_{m,t}$,当设备运行时, $\mu_{m,t}$ 为1,否则为0。设置 $\mu_{m,t}=\mu_{m,t-1}=1$,即可保证在主要生产设备调控负荷时,辅助生产设备跟随主要生产设备的调控方向一起调整。

3.6 整体模型搭建

搭建的改进TCN可调节潜力分析模型图见附录A图A8。将重组后的设备用电数据与对应时段的调控成本以滑动窗口形式输入改进TCN模型中,分别利用泄露性线性单元与高斯线性误差单元拟合自备电厂发电数据与设备用电数据,在改进TCN模型的训练过程中对学习率自适应调整因子进行优化,防止因时序数据跨度大而使模型陷入局部最优点的情况出现,模型训练结束后经全连接层输出不同时段在调控成本影响下的设备用电负荷,将该结果输入LSTM进行短时修正,并通过与实际用电数据进行对比得到工业设备的可调节潜力范围。

4 潜力测算流程

工业设备潜力测算流程如附录A图A9所示,具体步骤为:

1)对工业设备用电数据进行初步预处理;

2)建立 FCN 模型, 对数据进行基于负荷特性指标的数据集重构, 将遴选出的数据点按照时序重新进行组合, 得到有高可调节潜力的工业设备数据集;

3)对新数据集进行扩充,将对应调控时段的向 上调控成本、向下调控成本以基本电价进行计算,将 调控成本与自备电厂发电数据加入数据集;

4)将数据以滑动窗口形式输入改进TCN模型 进行分时段训练,在输出满足设备负荷约束条件后, 得到不同时段在调控成本影响下的工业设备用电调 节结果;

5)将分时电价代替基本电价,分别计算对应时 段的向上调控成本与向下调控成本,并将其输入模型,得到分时电价下的调控范围;

6)对得到的用电调节结果进行短时序列重组, 并将其输入LSTM进行短时序列修正,通过将修正 数据与真实用电情况进行对比得到工业设备可调节 潜力范围。

5 算例分析

5.1 实验环境及数据集介绍

本文实验环境所用CPU为AMD Ryzen 7 4800H with Radeon Graphics @ 2.90 GHz, GPU为NVIDIA RTX 2060, 16 GB内存, 编程环境为基于 Python 3.7 的 Tensorflow-GPU 2.1.0。

数据集选自青海省钢铁行业某大型厂的一年数据,包括工厂各时间点详细用电数据和历史响应数据,采集频率为每15 min采样1点。

5.2 工厂用电聚类分析

将工业用电数据按照负荷平均值进行分类,由 于订单量的差异与检修要求,工厂用电阶段可大致 分为订单产量保障阶段、订单余额生产阶段、设备检 修阶段这3个阶段。若订单正常,则工厂用电阶段 分为订单产量保障阶段与订单余额生产阶段;若订 单紧急,则工厂会全力加工,以订单产量保障阶段的 用电持续生产。因此,将订单产量保障阶段定义为 一类用电阶段,订单余额生产阶段定义为二类用电 阶段,设备检修阶段定义为三类用电阶段。

利用 K 均值算法分别对 3 类用电进行二次聚 类,聚类中心设为 3,再选取中位数作为工业用电代 表进行分析,聚类结果如附录 A 图 A10 所示。一类 用电阶段必须保障各类工业产品的稳定生产,达到 规定生产量。二类用电阶段用于生产订单余量工业 产品,该用电阶段可调节潜力较大,可对工厂用电实 施智能调节,在保障工厂生产量的同时降低电网运 行压力。一类用电阶段与二类用电阶段中的主要生 产设备用电占比约为 80%,辅助生产设备用电占比 约为 10%,剩余约 10% 的用电为员工生活等其他用 电。在三类用电阶段,将主要生产设备全部关闭检 修,对辅助生产设备进行风机通风等安全操作,工厂 用电主要为生活用电。由于三类用电阶段的负荷很 小,为详细展示一类用电阶段与二类用电阶段的用 电情况,在聚类结果图中仅展示一类用电阶段与二 类用电阶段的结果。

5.3 数据集重构结果

FCN模型为3层卷积结构,是由全局层和多分 类层搭建的网络,其中3层卷积结构的滤波器系数 分别设置为128、256、128,卷积核尺寸分别设置为 8、5、3,学习步长均设置为1,为确保全部数据均参 与FCN模型运算,利用网格搜索法对模型参数进行 最优化选择。

由工业用电聚类结果可知,一类用电阶段与二 类用电阶段具有可调节潜力分析价值,因此将原数 据分为一类用电阶段数据与二类用电阶段数据,由 于三类用电阶段为设备检修阶段,因此不考虑该阶 段的数据。

以表 B1中的负荷特性指标为特征,本文将一类 用电阶段与二类用电阶段数据的独热编码结果作为 标签输入 FCN模型中,得到遴选结果。一类用电阶 段与二类用电阶段工业大用户负荷特性指标映射的 皮尔逊系数热力图及数据集重构结果分别如附录A 图 A11—A14所示。由图 A11、A13可知,在一类用 电阶段,为保障订单规定产量按时完成,工业用电较 稳定,相较于二类用电阶段,该阶段的皮尔逊系数相 关性较小,但一类用电阶段与二类用电阶段的负荷 特性指标对数据集重构编码标签具有高相关性,这 表明模型分类结果具有可靠性,重构后的数据集具 有高可调节潜力。由图 A12 可知,原数据中用电平 缓时段占比很大,重构后的新数据集中的曲线波动 性较大,新数据集的可调节潜力高。

5.4 分时电价因子

根据2021年起实施的青海省电网销售电价表, 110~330 kV大工业用电价格如附录B表B2所示。 电力成本是工业企业产品成本的重要组成部分,电 价占据工业产品成本的40%~70%,因此电价因子 是影响工业可调节潜力测算的重要因素。将峰、平、 谷3个时段的电价因子输入调控成本,改变模型基 本电价下的调控成本系数,使得模型重新拟合负荷 数据,得到分时电价激励下的工业设备用电调控结 果,考虑到谷时段电价低于自备电厂发电成本,仅在 平时段分析时考虑自备电厂发电情况。

5.5 模型评价指标

均方误差(mean square error, MSE)是评价回归 模型的经典指标,计算公式为:

$$M = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
(14)

式中:M为MSE;y_i为参与历史响应后第i个数据点的设备用电功率,在低谷时段与平时段,将设备用电功率加上调控值,取最大负荷作为基准,在高峰时段,将设备用电功率减去调控值,取最小负荷作为基

准;ŷ_i为模型输出的第i个数据点调控结果。

为直接反映不同量纲下的模型效果,选取*R*方 系数值*R*²进行评价,计算公式为:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}}{\sum_{i=1}^{n} (\bar{y} - y_{i})^{2}}$$
(15)

式中: 疗为设备参与响应后的平均负荷。

5.6 潜力分析结果

潜力分析模型是由3个残差链接模块组成的 TCN,为确保TCN对工业设备用电数据全部进行拟 合计算,将各残差链接中的滤波器系数均设置为 64,扩张卷积系数分别设置为1、2、4、8、16、32、64, 卷积核的尺寸均设置为2。利用网格搜索法对模型 系数进行最优化处理,将正则化系数设置为0.1。由 于修正模型只需处理TCN模型输出结果,输入数据 量相对较少,因此只需将修正模型设置为单层网络。 本文采用单独的LSTM模型进行对比,该模型与 TCN模型的设置保持一致,由3层LSTM组成,卷积 核尺寸设置为2,添加正则化模块并将系数设置 为0.1。

峰、平、谷时段的参数设置如附录B表B3所示。 以历史响应数据和对应调控成本为基准,对不同电 价下调控成本对应的设备负荷通过模型进行拟合, 计算出不同时段的设备调节用电结果,并通过与实 际用电的对比得出设备可调节潜力范围。

表1为一类用电阶段生产设备可调节潜力结 果,附录B表B4为二类用电阶段生产设备可调节潜 力结果。一类用电阶段保障订单产量的用电,使各类 设备平稳运行,主要生产设备的可调节潜力不超过 10 MW,辅助生产设备的可调节潜力不超过0.5 MW。 二类用电阶段可对主要生产设备进行负荷降级与迁 移调控,主要生产设备的可调节潜力接近20 MW,辅 助生产设备的可调节潜力接近2 MW。

表1	一类用电	1阶段的生	产设备调	控范围

 Table 1 Regulation range of production equipments for first class electricity consumption period

	向上调	腔	向下调控		
设备	调控时段	潜力范 围 / MW	调控时段	潜力范 围 / MW	
主要生产	(00:00,09:00]	1.71~5.19	(09:00,12:00]	6.45~9.07	
设备	(12:00,18:00]	1.89~5.97	(18:00,24:00]	3.93~7.27	
辅助生产	(00:00,09:00]	0.18~0.38	(09:00,12:00]	0.23~0.40	
设备	(12:00,18:00]	0.12~0.36	(18:00,24:00]	0.08~0.28	

主要生产设备的可调节潜力仅占其实际用电负 荷的很小一部分,鉴于工业产品生产流程的要求,需 要严格控制主要生产设备的使用,对这类设备的调 控方法需与生产实际相结合,调控过程较为复杂。 辅助生产设备的负荷规模虽然较小,但由于这类设 备在工业产品的生产流程中只起到辅助作用,因此 这类设备可以直接参与负荷调节。

表2为一类用电阶段的主要生产设备日内最大 可调节潜力结果,附录B表B5为一类用电阶段的辅 助生产设备日内最大可调节潜力结果,附录B表 B6、B7为二类用电阶段的生产设备日内最大可调节 潜力结果。由表2可知:未考虑分时电价影响前,调 控成本以基本电价为准进行计算,主要生产设备的 可调节潜力较小,因为采用基本电价计算经济成本 时,各时段的可调节潜力受调控成本的影响较小;考 虑分时电价影响后,各时段调控成本改变,由于模型 受调控成本影响,潜力测算结果增幅较大,LSTM对 这种突发改变可以进行短时修正,得到修正后的潜 力分析结果;由于LSTM对设备长时段的计算性能 较差,这导致相同调控方向时段上的潜力结果不具 有时段特性,从而使得单独LSTM模型的分时段可 调节潜力测算结果不准确。

表 2 一类用电阶段的主要生产设备日内最大 可调节潜力

Table 2 Maximum daily adjustable potential of main production equipments for first class electricity consumption period

	-		
调控时段	调控方向	基本电价 潜力 / MW	分时电价 潜力 / MW
(00:00,09:00]	向上	2.49	6.83
(09:00,12:00]	向下	6.13	11.60
(12:00,18:00]	向上	1.74	5.74
(18:00,24:00]	向下	3.81	8.54
调控时段	修正潜力 范围 / MW	自备电厂发电 潜力 / MW	单独LSTM 模型 潜力 / MW
(00:00,09:00]	4.59	0	1.94
(09:00,12:00]	8.47	0	6.52
(12:00,18:00]	3.30	0.08	1.60
(18:00,24:00]	5.66	0	5.11

表3为各时段下本文模型与单独LSTM模型的 MSE与R²。由表可知,各时段下本文模型的MSE相 差不大,这说明各时段模型均保持稳定,R²也较接 近,且均在0.9以上,各项评价指标均优于单独LSTM 模型,因此,各时段下本文模型得到的工业设备可调 节潜力分析结果准确性较高。

表3 模型评价结果

Table 3 Model evaluation results

模型	调控时段	MSE	R^2
	(00:00,09:00]	0.023	0.904
木文構刊	(09:00,12:00]	0.021	0.917
平义侠堂	(12:00,18:00]	0.023	0.941
	(18:00,24:00]	0.023	0.930
畄油 L CTM 借刊	(00:00,09:00]	0.038	0.850
	(09:00,12:00]	0.036	0.873
中独L51M 侠堂	(12:00,18:00]	0.032	0.847
	(18:00,24:00]	0.033	0.892

6 结论

本文基于深度学习理论提出一种工业大用户的 可调节潜力分析模型,该模型可对工业数据进行数 据集重构,得到具有高可调节潜力的工业大用户数 据集,并计算在调控成本影响下的分时段分方向工 业设备可调节潜力。本文模型实现了综合考虑调控 成本和价格激励的工业大用户双向可调节潜力的分 时段分析,有助于实现需求侧资源可调节潜力的自 动化查询,提升新型电力系统的负荷管理能力,推进 可调节资源池的建设。

附录见本刊网络版(http://www.epae.cn)。

参考文献:

 [1]杨景旭,李钦豪,张勇军,等.考虑电网需求匹配度的多EV聚合商需求响应削峰优化建模[J].电力自动化设备,2021,41(8): 125-134.

YANG Jingxu, LI Qinhao, ZHANG Yongjun, et al. Peak shaving optimization modeling for demand response of multiple EV aggregators considering matching degree of power grid demand[J]. Electric Power Automation Equipment, 2021, 41(8): 125-134.

- [2] 吴迪,王韵楚,郁春雷,等. 基于高斯过程回归的工业用户需求 响应潜力评估方法[J]. 电力自动化设备,2022,42(7):94-101.
 WU Di,WANG Yunchu,YU Chunlei, et al. Demand response potential evaluation method of industrial users based on Gaussian process regression[J]. Electric Power Automation Equipment,2022,42(7):94-101.
- [3] 国家发展改革委,国家能源局.关于促进新时代新能源高质量 发展的实施方案[EB/OL].(2022-05-30)[2022-05-30].http:// www.gov.cn/zhengce/content/2022-05/30/content_5693013. htm.
- [4] 徐筝,孙宏斌,郭庆来.综合需求响应研究综述及展望[J].中 国电机工程学报,2018,38(24):7194-7205,7446.
 XU Zheng, SUN Hongbin, GUO Qinglai. Review and prospect of integrated demand response[J]. Proceedings of the CSEE, 2018,38(24):7194-7205,7446.
- [5] 王彩霞,时智勇,梁志峰,等.新能源为主体电力系统的需求侧资 源利用关键技术及展望[J].电力系统自动化,2021,45(16):37-48.
 WANG Caixia, SHI Zhiyong, LIANG Zhifeng, et al. Key technologies and prospects of demand-side resource utilization for power systems dominated by renewable energy[J]. Automation of Electric Power Systems,2021,45(16):37-48.
- [6]周竟,耿建,唐律,等.可调节负荷资源参与电力辅助服务市场 规则分析与思考[J].电力自动化设备,2022,42(7):120-127.
 ZHOU Jing, GENG Jian, TANG Lü, et al. Rule analysis and cogitation for adjustable load resources participating in ancillary service market[J]. Electric Power Automation Equipment, 2022,42(7):120-127.
- [7] 徐青山,丁一帆,颜庆国,等.大用户负荷调控潜力及价值评估研究[J].中国电机工程学报,2017,37(23):6791-6800,7070.
 XU Qingshan, DING Yifan, YAN Qingguo, et al. Research on evaluation of scheduling potentials and values on large consumers[J]. Proceedings of the CSEE,2017,37(23):6791-6800, 7070.
- [8] 陈逸涵,李扬,沈运帷.基于负荷控制潜力量化模型的工业用 户群体画像方法[J].电力自动化设备,2021,41(8):208-216.
 CHEN Yihan, LI Yang, SHEN Yunwei. Industrial customer group portrait method based on potential quantization model

of load control[J]. Electric Power Automation Equipment, 2021,41(8):208-216.

- [9] 李彬,曹望璋,崔高颖,等.基于二次分组的避峰负荷优化调控 方法[J].电网技术,2016,40(12):3904-3911.
 LI Bin,CAO Wangzhang,CUI Gaoying, et al. Dispatching approach for optimized peak averting based on secondary round grouping[J]. Power System Technology,2016,40(12):3904-3911.
- [10] 孙毅,毛烨华,李泽坤,等.面向电力大数据的用户负荷特性和可调节潜力综合聚类方法[J].中国电机工程学报,2021,41 (18):6259-6271.
 SUN Yi, MAO Yehua, LI Zekun, et al. A comprehensive clustering method of user load characteristics and adjustable potential based on power big data[J]. Proceedings of the CSEE,

2021,41(18):6259-6271.
[11] 孙毅,刘迪,李彬,等. 深度强化学习在需求响应中的应用[J].
电力系统自动化,2019,43(5):183-191.
SUN Yi,LIU Di,LI Bin, et al. Application of deep reinforcement learning in demand response[J]. Automation of Electric

- Power Systems,2019,43(5):183-191.
 [12] 孔祥玉,刘超,王成山,等.基于深度子领域自适应的需求响应 潜力评估方法[J].中国电机工程学报,2022,42(16):5786-5797,6156.
 KONG Xiangyu,LIU Chao,WANG Chengshan, et al. Demand response potential assessment method based on deep subdomain adaptation network[J]. Proceedings of the CSEE,2022,42(16):
- [13] KONG Xiangyu, KONG Deqian, YAO Jingtao, et al. Online pricing of demand response based on long short-term memory and reinforcement learning[J]. Applied Energy, 2020, 271:114945.

5786-5797,6156.

- [14] WANG Y Y, CHEN J, CHEN X Q, et al. Short-term load forecasting for industrial customers based on TCN-LightGBM [J]. IEEE Transactions on Power Systems, 2021, 36(3):1984-1997.
- [15] 涂夏哲,徐箭,廖思阳,等.考虑过程控制的钢铁工业负荷用能 行为分析与功率特性建模[J].电力系统自动化,2018,42(2): 114-120.

TU Xiazhe, XU Jian, LIAO Siyang, et al. Process controlling based energy consumption behavior analysis and power characteristic modeling for iron and steel industry [J]. Automation of Electric Power Systems, 2018, 42(2):114-120.

- [16] YUAN X F, QI S B, WANG Y L, et al. Quality variable prediction for nonlinear dynamic industrial processes based on temporal convolutional networks[J]. IEEE Sensors Journal, 2021,21(18):20493-20503.
- [17] 吴晨,姚菁,薛贵元,等. 基于 MMoE 多任务学习和长短时记忆
 网络的综合能源系统负荷预测[J]. 电力自动化设备,2022,42
 (7):33-39.

WU Chen, YAO Jing, XUE Guiyuan, et al. Load forecasting of integrated energy system based on MMoE multi-task learning and LSTM[J]. Electric Power Automation Equipment, 2022, 42(7);33-39.

作者简介:

李 彬(1983—),男,副教授,博士,主 要从事电气信息技术及电力系统通信方面 的研究工作(**E-mail**:direfish@163.com);

明 雨(1998—),男,硕士研究生,主 要从事电力需求响应潜力分析方面的研究 工作(**E-mail**:mingncepu@163.com)。

李 彬

(编辑 王锦秀)

(下转第166页 continued on page 166)

Peer-to-peer transaction model for prosumers considering franchise of distribution company

ZHAN Bochun^{1,2}, FENG Changsen³, LIN Zhemin⁴, SHAO Xiaoyu⁵, WEN Fushuan^{1,2}

(1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;

2. Hainan Institute, Zhejiang University, Sanya 572024, China;

3. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China;

4. Anhui Power Exchange Center Co., Ltd., Hefei 230009, China;

5. Economic & Technical Research Institute of State Grid Anhui Electric Power Co., Ltd., Hefei 230071, China)

Abstract: When designing peer-to-peer power transaction mechanism for the distribution system level, it is needed to consider the franchise owned by the distribution company, and effectively compensate the investment and operation costs of infrastructure owners of the distribution system by designing appropriate network charging mode. A peer-to-peer transaction model for prosumers considering the franchise of distribution company is proposed. Based on the Stackelberg interaction relationship between distribution company and prosumer, a bi-level game model of network fee pricing based on electrical distance is established, the upper level is a decision-making model of network fee price with the maximum income of distribution company as the object, while the lower level is an optimal dispatch model of prosumers considering network fee. The bi-level game model is transformed into a single level mixed-integer programming problem based on Karush-Kuhn-Tucker(KKT) condition, and then the network fee price is obtained. The alternating direction method of multipliers is used to solve the peer-to-peer real-time transaction power quantity and transaction price of prosumers. The simulative results of IEEE 33-bus distribution system verify that the proposed model can guarantee the benefits of all prosumers on the basis of ensuring the secure operation of distribution system, and can reasonably compensate the income loss caused by giving up a part of franchise of distribution tion company.

Key words: franchise; peer-to-peer transaction; Stackelberg game; network fee; KKT condition; alternating direction method of multipliers

(上接第157页 continued from page 157)

Adjustable potential analysis model for large industrial users based on FCN-TCN-LSTM fusion

LI Bin¹, MING Yu¹, HAO Yihao¹, CHEN Songsong^{2,3}, WANG Weidong^{2,3}

(1. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China;

2. Beijing Key Laboratory of Demand Side Multi-energy Carriers Optimization and Interaction Technique,

Beijing 100192, China; 3. China Electric Power Research Institute, Beijing 100192, China)

Abstract: It is critical to promote the load management ability of new style power system to carry out timephased analysis of bi-directional adjustable potential for large industrial users comprehensively considering the influence of regulation cost and price incentive. A model based on the fusion of fully convolutional network(FCN), temporal convolutional network(TCN) and long short-term memory network(LSTM) is established to analyze the adjustable potential of large industrial users. A dataset reconstruction model of fully convolutional network is established, and the selection of large industrial users with high adjustable potential load data is realized based on typical load characteristic indicators. Based on high adjustable potential data set, an improved temporal convolutional network is established, the adjustable potential of large industrial users is analyzed and measured under the influence of regulation cost. The proposed model is verified based on real data, and case results show that the proposed model can analyze the adjustable potential of typical equipments of large industrial users, and the model has high stability and accuracy.

Key words: demand response; adjustable potential; industrial equipment regulation; FCN; TCN; LSTM

附录 A

图 A1 持续型冲击负荷模型仿真图 Fig.A1 Simulation diagram of continuous shock load model

图 A2 间接型冲击负荷模型仿真图 Fig.A2 Simulation diagram of indirect shock load model

Fig.A9 Flowchart of load potential calculation

Fig.A11 Pearson coefficient heat map of load characteristic indicators for first class electricity consumption period

Fig.A12 Reconstruction results of data set for first class electricity consumption period

图 A13 二类用电负荷特性指标皮尔逊系数热力图

Fig.A13 Pearson coefficient heat map of load characteristic indicators for second class electricity consumption period

图 A14 二类用电数据集重构结果 Fig.A14 Reconstruction results of data set for second class electricity consumption period

Table B1 Load characteristic indexes					
名称	含义	意义			
全天负荷率	典型负荷曲线平均功率与全天最 大功率之比	反映全天负荷变化			
日峰谷差率	典型负荷曲线平均功率与全天最 大功率之比	反映全天最大最小负 荷差距			
峰期负荷率	典型负荷曲线全天最大功率与最 小功率的差与全天最大功率之比	反映峰期负荷使用量			
谷期负荷率	典型负荷曲线峰期平均功率与全 天最大功率之比	反映谷期负荷使用量			
平期负荷率	典型负荷曲线峰期平均功率与全 天最大功率之比	反映平期负荷使用量			
日最小负荷率	典型负荷曲线最小负荷与最大负 荷的比值	反映全天负荷波动			

表 B1 负荷特性指标 Table B1 Load characteristic inde

用电设备功率约束

依据生产设备间的次序性与流程性,建立设备调控功率约束,约束式如下所示。

$$\sum_{n \in \mathcal{M}} \mu_{m,k} = T_{m,b} \qquad k \in [t_{m,\min}, t_{m,\max}]$$
(B1)

式(B1)为用电设备 m 工作时长约束, M 表示全体设备, T_{m,b} 为设备工作时长, b 为完成生产任务所需 的全部时段, $t_{m,\min}$ 表示工作最短时间, $t_{m,\max}$ 表示工作最长时间。

$$\frac{1}{T_{m,n}}\sum_{k=1}^{t}\mu_{m,k} \ge \mu_{m,t} - \mu_{m,t+1} \quad \forall t \in K$$
(B2)

式(B2)为设备 m 不可中断性约束, K 为全部调度时段;

$$\mu_{m,t} \le \frac{1}{T_{m,b}} \sum_{k=1}^{t-1} \mu_{m,k} \quad \forall t \in K$$
(B3)

式(B3)为前置设备约束,即设备 m'工作后,设备 m 随后才能开始工作;

$$\mu_{m',t} - \mu_{m,t-1} \le \sum_{k=1}^{t-1} \mu_{m',k} \quad \forall t \in K$$
(B4)

式(B4)为设备强关联性约束,即设备 m'开始工作设备 m 必须开始工作;

$$\mu_{m',t} = \mu_{m,t} \quad \forall t \in K \tag{B5}$$

式(B5)为设备同步约束,即关联性极强的两类用电设备其运行状态系数保持一致。

Table B2 Large industrial electricity prices						
	基本电价					
工业用电时段	电度电仰/	最大需量/	变压器容量/			
		[元•(kW•月) ⁻¹]	[元•(kV•A•月) ⁻¹]			
峰(09:00—12:00,18:00—23:00)	0.5377					
谷(00:00—08:00)	0.1387	28.5	19			
平(其余时段)	0.3382					

表 B2 大工业用申价格

时段	调控方向	基本电价调控成本	分时电价调控成本	设备关联设置
谷	向上	$E_{ m u}^{ m t}$	$E_{ m u}^{\prime m t}$	
峰	向下	$E_{ m d}^{ m p}$	$E_{ m d}^{\prime m p}$	$\mu_{m',t} = \mu_{m,t-1} = 1$
<u>Ψ</u> .	向上	$E_{ m u}^{ m n}$	$E_{ m u}^{\prime m n}$	

表 B3 对应时段参数 Table B3 Parameters of corresponding periods

注: $E_u^t imes E_u^n$ 分别为基本电价下低谷时段与平时段的向上调控成本, E_d^p 为基本电价下高峰时段的 向下调控成本, $E_u^{\prime t} imes E_u^{\prime p} imes E_u^{\prime n}$ 为分时电价下对应时段的调控成本。

表 B4 二类用电阶段的生产设备可调节潜力

Table B4 Adjustable potential of production equipments for second class electricity

consumption period						
	向上	调控	向下调控			
设备类型 —	调控时段	潜力范围/MW	调控时段	潜力范围/MW		
主要设备	(00:00, 09:00]	8.05~13.47	(09:00, 12:00]	9.21~19.26		
	(12:00, 18:00]	3.25~12.80	(18:00, 24:00]	3.23~13.47		
辅助设备	(00:00, 09:00]	0.85~1.73	(09:00, 12:00]	0.17~1.30		
	(12:00, 18:00]	0.33~1.86	(18:00, 24:00]	0.12~1.82		

表 B5 一类用电阶段的辅助设备日内最大可调节潜力

Table B5 Maximum daily adjustable potential of auxiliary equipments for first class electricity consumption period

consumption period							
调控时段	调控方向	基本电价潜	分时电价潜	修正潜力	自备电厂发电	单独 LSTM 模	
		力/MW	力/MW	范围/MW	潜力/kW	型潜/MW	
(00:00, 09:00]	向上	0.24	0.47	0.33	0	0.20	
(09:00, 12:00]	向下	0.31	0.41	0.36	0	0.27	
(12:00, 18:00]	向上	0.28	0.36	0.31	3.01	0.23	
(18:00, 24:00]	向下	0.17	0.25	0.19	0	0.22	

表 B6 二类用电阶段的主要生产设备日内最大调节潜力

Table B6 Maximum daily adjustable potential of main production equipments for second class electricity consumption period

consumption period						
调控时段	调控方向	基本电价潜	分时电价	修正潜力	自备电厂发	单独 LSTM 模
		力/MW	潜力/MW	范围/MW	电潜力/MW	型潜力/MW
(00:00, 09:00]	向上	9.49	18.43	14.79	0	5.94
(09:00, 12:00]	向下	14.14	18.47	16.5	0	7.81
(12:00, 18:00]	向上	6.74	9.74	7.30	0.23	6.80
(18:00, 24:00]	向下	7.81	13.83	10.55	0	7.11

表 B7 二类用电阶段的辅助设备日内最大调节潜力

Table B7 Maximum daily adjustable potential of auxiliary equipments for second class electricity consumption period

			1 1			
调控时段	调控方向	基本电价潜	分时电价潜	修正潜力	自备电厂发电	单独 LSTM 模
_		力/MW	力/MW	范围/MW	潜力/MW	型潜力/MW
(00:00, 09:00]	向上	1.40	2.15	1.73	0	1.20
(09:00, 12:00]	向下	0.76	1.15	0.81	0	0.66
(12:00, 18:00]	向上	1.26	1.67	1.45	0.02	1.17
(18:00, 24:00]	向下	0.83	1.55	0.93	0	0.73