Vol.43 No.9 Sept. 2023

计及安全稳定约束的多直流送出电网 新能源极限渗透率估计方法

陈义宣¹,王国腾²,李玲芳¹,游广增¹,孙 鹏¹,黄 莹²,徐 政² (1. 云南电网有限责任公司电网规划研究中心,云南 昆明 650011;2. 浙江大学 电气工程学院,浙江 杭州 310027)

摘要:基于电网换相换流器的高压直流系统是大型能源基地电力外送的重要技术手段,然而新能源渗透率的 提高会降低送端电网的安全稳定性。为保证多直流送出电网的安全稳定运行,提出一种计及安全稳定约束 的多直流送出电网可承受新能源极限渗透率估计方法。推导各类安全稳定约束的表达式,包括短路电流约 束、多直流短路比约束以及频率稳定约束;在考虑安全稳定约束的情况下建立多直流送出电网优化调度模 型;给出优化调度模型分段线性求解方法,并基于该方法提出新能源极限渗透率估计方法。修改的IEEE 39 节点系统仿真结果验证了所提方法的有效性。

0 引言

未来新能源机组的并网规模将会越来越大,大型新能源基地的数量也会增多^[1]。大型新能源基地 通常采用直流外送手段,随着特高压直流系统数量 和容量的增加,送端电网逐渐演变成新能源高渗透 率的多直流送出电网^[2]。与同步发电机不同,新能 源机组难以为系统提供频率或电压支撑,并且直流 系统的存在还会进一步降低系统的安全稳定性^[34]。 考虑到多直流送出场景下系统的安全稳定约束,确 定送端电网可承受的最高新能源渗透率是保障多直 流送出电网安全稳定运行的重要前提。

新能源渗透率的提高受到多方面的约束,包括 电力电量平衡^[5]、线路潮流^[6]、市场机制^[7]、稳定性^[8] 等。按照约束类型的不同,限制新能源渗透率提高 的因素大致可以分为潮流约束、频率约束、电压约束 和功角约束4类。潮流约束是最基础的约束条件, 相应地,潮流约束下的新能源极限渗透率也是最早 受到关注的问题。文献[9]基于潮流约束建立用于 光伏电站极限容量计算的分布鲁棒优化模型。文献 [10]采用条件风险随机优化模型,在常规潮流约束 下计算光伏电站并网极限容量。考虑到新能源出力 的不确定性,潮流机会约束也被广泛应用于光伏电 站或风电场极限渗透功率的计算中^[11-12]。另外,连 锁故障也是制约新能源渗透率提高的重要因素之 一。随着新能源渗透率的提高,电网呈现低惯量电 力系统特征,面对大负荷和大功率直流时难以满足

收稿日期:2023-05-13;修回日期:2023-07-30 在线出版日期:2023-08-08

基金项目:云南电网有限责任公司科技项目(YNKJXM20220067) Project supported by the Science and Technology Program of Yunnan Power Grid Co.,Ltd.(YNKJXM20220067)

频率稳定性的要求,因此,频率约束下的新能源极限 渗透率成为近年来的焦点问题。文献[13]指出频率 问题是制约典型电力系统中风电接入比例的约束条 件,并在算例中计算风电最高接入比例。文献[14] 考虑风电机组提供惯量的工况,提出新型电力系统 的频率响应建模方法。文献[15]通过一次调频传递 函数模型求解频率约束下的风电占比极限值。由于 电力电子装置对系统的电压支撑不足,难以达到类 似同步发电机贡献短路电流的效果,电压约束也成 为制约新能源渗透率提高的重要因素。功角约束通 常在长交流联络线连接的电网中起到制约新能源渗 透率的作用[16],对于直流连接的异步电网而言,通常 不存在功角失稳风险。然而,上述文献均局限于单 一约束下新能源极限渗透率的计算和研究,而实际 系统的新能源极限渗透率通常是多种因素共同作 用的结果,为此,很多学者在综合考虑潮流、频率、电 压等约束条件后,给出新能源极限渗透率的计算 方法[17-18]。

虽然已经有大量关于新能源极限渗透率计算方 法的研究成果,但现有方法并未考虑直流接入对电 网安全稳定性的影响,各类约束条件对多直流送出 电网也不能完全适用。为解决该问题,本文提出一 种计及安全稳定约束的多直流送出电网新能源极限 渗透率估计方法,为电网运行规划提供参考,避免新 能源占比过高带来的送端电网安全稳定性问题。该 方法由两部分组成:一部分是综合考虑各类安全稳 定约束的优化调度模型,该模型刻画了多直流送出 电网短路电流、电压、频率等各类约束;另一部分是 新能源极限渗透率的计算方法,对优化调度模型进 行分段线性求解,并基于求解结果给出新能源极限 渗透率估计值。

1 多直流送出电网的安全稳定约束

多直流送出电网的拓扑示意图如附录A图A1 所示。送端电网内部含有大量的同步发电机和新能 源机组,同步发电机和新能源机组的一小部分电力 由系统内部负荷消纳,其余大部分电力通过多个基 于电网换相换流器(line commutated converter,LCC) 的高压直流(high voltage direct current,HVDC)系统 外送至其他地区。直流系统的受端可以是一个同步 交流系统,也可以是多个异步交流系统的组合。

1.1 短路电流约束

同步发电机的开机方式决定了交流系统与各直 流系统之间的相对强度,同时也会大幅影响各交流 母线的短路电流。多直流送出电网内部任一母线的 短路电流均需要满足约束式(1)。

$$I_{\text{short}}^{i} \leq \alpha I_{\text{max}}^{i} \quad \forall i \tag{1}$$

式中: I_{short}^{i} 为母线i的短路电流; α 为裕度系数,用于 为短路电流留一定裕度; I_{max}^{i} 为母线i的最大可承受 短路电流。

在计算某一母线三相短路电流时,各发电机对 短路电流的贡献遵循叠加定理,因此,某一母线三相 短路电流的表达式可以写成关于系统开机方式的函 数,即:

$$I_{\text{short}}^{i} = \sum_{j=1}^{N_{g}} \Delta I_{\text{short}}^{i,j} \mathcal{Y}^{j}$$
(2)

式中: N_g 为发电机数量; $\Delta I_{short}^{i,j}$ 为母线i发生三相金属 性短路故障时机组j向母线i贡献的短路电流; y^j 表 示机组j是否开机,其值为0表示不开机,为1表示 开机。

为获得机组j对母线i贡献的短路电流,将其余 机组和直流系统看作开路,将负荷看作恒阻抗,系统 等值电路如附录A图A2所示。图中,母线i处发生 三相金属性接地短路故障,通过计算可得到机组j向母线i提供的短路电流 ΔI_{short}^{ij} 。

将式(2)代入式(1),可以将母线短路电流约束 写成关于表征机组状态变量的约束,即:

$$\sum_{j=1}^{N_{e}} \Delta I_{\text{short}}^{i,j} \gamma^{j} \leq \alpha I_{\max}^{i} \quad \forall i$$
(3)

通过设置合理的火电机组开机方式可以在各母 线短路电流不越限的前提下保证交流系统强度充 裕,维持直流系统的稳定运行。

1.2 多直流短路比约束

通常采用短路比衡量交流系统和直流系统之间 的相对强度,短路比越大,换流母线的静态电压稳定 性越好,直流系统在各种扰动下越容易保持稳定。 对于图 A1 所示的多直流送出电网,一般采用式(4) 所示的多直流短路比衡量交流系统和直流系统之间 的相对强度。

$$R^{d}_{\text{MISCR}} = S^{d}_{\text{short}} / \left(P^{d}_{\text{dc}} + \sum_{c \neq d} F^{d, c}_{\text{MIF}} P^{c}_{\text{dc}} \right)$$
(4)

式中: R^{d}_{MISCR} 为直流系统d的多直流短路比; S^{d}_{short} 为直流系统d换流母线的短路容量; P^{c}_{dc} 、 P^{d}_{dc} 分别为直流系统c、直流系统d的额定功率; $F^{d,c}_{\text{MIF}}$ 为直流系统d和 直流系统c的多馈入交互因子。

根据短路容量的定义,短路容量是短路电流和 额定电压的乘积。由于电流限幅的存在,新能源机 组可提供的短路电流很小,几乎可以忽略不计。但 是在正常状态下新能源机组具备定交流母线电压的 能力,可以在正常运行过程中为系统提供电压支撑。 因此,在新能源高渗透率电力系统中,短路电流并不 能反映新能源机组提供电压支撑的作用。为此,本 文采用一种可用于新能源电力系统的广义短路容量 计算方法,具体如下。

1)首先对目标节点的外部系统进行戴维南等 值,得到系统的等值阻抗*X*_{sys},目标节点在标幺值下 的短路容量*S*^{*d*}_{shot}为:

$$S_{\rm short}^d = 1/X_{\rm sys}^d \tag{5}$$

式中:X^d_{sys}为直流系统 d 外部系统的戴维南等值 阻抗。

2)在计算戴维南等值阻抗时,认为同步发电机 所连节点的电压恒定为1.0 p.u.。

3)在计算戴维南等值阻抗时:若新能源机组采 用恒功率控制,则将新能源机组视作开路;若新能源 机组采用恒压控制,则将新能源机组视作短路。

根据式(4),为获得各整流站的多直流短路比, 还需知道任意2条换流母线之间的多馈入交互因 子。直流系统*c*换流母线和直流系统*d*换流母线之 间的多馈入交互因子近似等于换流母线对应节点的 互阻抗与自阻抗的比值,即:

$$F_{\text{MUE}}^{d,c} = \Delta U^c / \Delta U^d \approx \left| Z^{c,d} / Z^{d,d} \right| \tag{6}$$

式中: ΔU^{e} 、 ΔU^{d} 分别为直流系统c、直流系统d母线的电压变化量; $Z^{e,d}$ 为直流系统c换流母线和直流系统d换流母线之间的互阻抗; $Z^{d,d}$ 为直流系统d换流母线的自阻抗。

保证直流系统稳定运行的约束可表示为:

$$R^{d}_{\text{MISCR}} \ge R_{\text{crt}} \quad \forall d \tag{7}$$

式中:*R*_{en}为能保持直流系统稳定运行的多直流短路 比临界值。

结合式(2),将式(5)、(6)代人式(7),可将多离 散场景下直流系统的多直流短路比约束写成关于表 征机组状态变量的约束,即:

$$\sum_{j=1}^{N_{e}} \frac{1}{\Delta X_{\text{sys}}^{d,j}} y^{j} \ge \left(P_{\text{dc}}^{d} + \sum_{c \neq d} F_{\text{MIIF}}^{d,c} P_{\text{dc}}^{c} \right) R_{\text{crt}} \quad \forall d \qquad (8)$$

式中: ΔX^{4,j}为机组 j 开机方式改变造成的直流系统 d 外部系统等值阻抗的变化量。

1.3 频率约束

238

系统的频率特性可从惯量水平和调频能力2个方面来衡量,对应指标分别是最大频率变化率(rate of change of frequency,RoCoF)和静态频率偏差,前者反映了系统的惯量水平,而后者反映了系统的一次调频能力。对多直流送出电网的频率稳定性威胁最大的是直流系统的N-1故障。任一直流发生闭锁时,送端系统的功率均会出现大量盈余,从而导致频率上升。RoCoF的大小与系统惯性及缺失功率有关,可以表示为:

$$v_{\rm R} = \Delta P_{\rm dc}^{\rm max} / (2H_{\rm sys}) \tag{9}$$

式中: $v_{\rm R}$ 为RoCoF; $\Delta P_{\rm de}^{\rm max}$ 为N-1故障下可能丢失的最 大直流功率; $H_{\rm sys}$ 为系统等值转子惯性时间常数。在 $\Delta P_{\rm de}^{\rm max}$ 一定的情况下,系统惯量越大,频率变化速度 越慢,系统发生频率失稳的风险越小。

可以将式(9)写成关于机组运行状态的约束,即:

$$\sum_{j=1}^{N_{\varepsilon}} S_{\rm B}^{\rm i} H^{j} \gamma^{j} \ge \Delta P_{\rm dc}^{\rm max} / (2v_{\rm Rc})$$

$$\tag{10}$$

式中: S_{B} 为机组j的额定容量;H为机组j的转子惯性时间常数; v_{Re} 为RoCoF临界值。

当最大的直流系统发生单极闭锁时,假设丢失 功率为 ΔP_{te}^{max} ,则静态频率偏差 Δf_s 为:

$$\Delta f_{\rm st} = \frac{\Delta P_{\rm dc}^{\rm max}}{D_{\rm sys} + K_{\rm sys}} \tag{11}$$

式中:*D*_{sys}为系统等值阻尼系数;*K*_{sys}为系统等值调差 系数的倒数。

类似地,可将式(11)写成关于机组运行状态的 约束,即:

$$\sum_{j=1}^{N_{\rm g}} S_{\rm B}^{j} \left(D^{j} + K^{j} \right) y^{j} \ge \Delta P_{\rm dc}^{\rm max} / \Delta f_{\rm st} \tag{12}$$

式中: D^{i} 为机组j的阻尼系数; K^{i} 为机组j调差系数的倒数。

新能源机组通常运行在最大功率跟踪模式,要 想具备有功支撑的能力,就需要留有一定的有功功 率裕度参与调频。频率稳定性的本质是供需平衡问 题,若新能源机组具有足够的有功功率裕度,则说明 供给侧能量充裕。新能源机组通常通过变流器并 网,可以起到类似快速功率支援的效果,在检测到频 率偏差变化后可以快速释放自身预留的容量。在新 能源机组有功功率裕度很大的情况下,系统频率稳 定性可以通过新能源机组的快速功率支援来保证, 这种情况不在本文的讨论范围内,本文主要针对新 能源机组能发尽发条件下的极限渗透率问题。

2 计及安全稳定约束的优化调度模型

在电力系统中,线路断开的故障时有发生,线路 断开会使网架强度变弱,降低各直流系统的多直流 短路比。考虑到线路N-1故障在电力系统中具有较高的发生概率,任何线路N-1故障的发生均不应引起直流系统不稳定,以免发生连锁反应,扩大故障范围,因此,在考虑多离散场景的前提下,本文采用式(13)作为机组启停成本和发电成本优化目标函数。

$$\min \sum_{t=1}^{T} \left(\boldsymbol{a}^{\mathrm{T}} \boldsymbol{y}^{t} + \boldsymbol{b}^{\mathrm{T}} \boldsymbol{o}^{t} + \boldsymbol{c}^{\mathrm{T}} \boldsymbol{u}^{t} \right) + \max_{p^{t} \in \psi} \min \sum_{s=1}^{N_{s}+1} p^{s} \left(\sum_{t=1}^{T} \boldsymbol{d}^{\mathrm{T}} \boldsymbol{P}_{g}^{s,t} \right)$$
(13)

式中:T为优化周期的时刻数; $a \ b \ c$ 为成本向量;y'为t时刻各机组运行状态组成的向量,其第j个元素为0表示机组j关停,为1表示机组j运行;o'为t时刻各机组是否开机的标志组成的向量;u'为t时刻各机组是否并机的标志组成的向量; ψ 为场景发生概率的集合,属于范数集合,如式(14)所示;p'为场景s发生的概率,共有 N_s +1个场景, N_s +1个场景中包含1个正常运行工况和 N_s 个N-1故障工况;d为机组的运行成本向量; $P_{g'}^{s'}$ 为场景s下t时刻各机组出力组成的向量。

$$\psi = \left\{ \boldsymbol{p} \in \mathbf{R}_{+} \left| \sum_{s=1}^{N_{*}+1} p^{s} = 1 \right| \\ \sum_{s=1}^{N_{*}+1} p^{s} - p_{0}^{s} | \leq \theta_{1} \\ \max_{s=1, 2, \cdots, N_{*}+1} p^{s} - p_{0}^{s} | \leq \theta_{\infty} \right\}$$
(14)

式中:p为场景发生概率p^s的向量形式; $p \in \mathbf{R}_{+}$ 表示向量p中元素均为正实数; p_{0}^{s} 为场景s发生的初始概率; θ_{1} 、 θ_{s} 分别为p^s与 p_{0}^{s} 偏差的1范数和无穷范数上限,表达式如式(15)所示。

$$\begin{cases} \theta_1 = \frac{N_s}{2Z} \ln \frac{2N_s}{1 - \beta_1} \\ \theta_\infty = \frac{1}{2Z} \ln \frac{2N_s}{1 - \beta_\infty} \end{cases}$$
(15)

式中:*Z*为实际运行场景数; β₁、β_{*}分别为场景发生 概率的1范数约束和无穷范数约束成立的置信度。

此外,电力系统运行还需要满足功率平衡、机组 出力限制、机组启停限制等约束,系统运行约束如附 录B式(B1)—(B9)所示。根据式(13)—(15)、式 (B1)—(B9)建立的优化调度模型中含有非线性项, 这给模型的求解带来困难,为此,对优化调度模型 进行线性化,过程如附录B式(B10)—(B15)所示, 最终优化调度模型被转换为混合整数规划问题。

3 新能源极限渗透率估计方法

利用上述优化调度模型及其求解方法,本文提 出一种多直流送出电网的新能源极限渗透率估计方 法,方法详细流程如附录A图A3所示。关键步骤 如下。

1)选定新能源初始功率。运行人员首先需要筛

选出所有备选新能源电源站址,并以此为输入条件 启动新能源极限渗透率估计方法。在启动该方法 后,根据负荷需求给定新能源初始功率。

2)求解优化调度模型。在给定的新能源渗透率 下:若优化调度模型有解,则说明在该新能源渗透率 下可以找到一种满足各类安全稳定约束的运行方 案,系统并未达到新能源极限渗透率,转至步骤3); 若优化调度模型无解,则说明在该新能源渗透率下 不存在满足各类安全稳定约束的运行方案,已经找 到系统的新能源极限渗透率,结束计算。

3)进一步提高新能源渗透率,再转至步骤2)。 具体方法是选择一个增长方向,增大各新能源电源 的容量和出力,并根据负荷需求相应增大负荷用电 量,从而保证系统的供需平衡。

4 算例分析

利用一个修改的 IEEE 39节点系统对所提方法 进行验证,测试系统网架结构如附录 C 图 C1 所示。 在 PSS / E软件上进行仿真,并利用 Gurobi 对优化调 度模型进行求解。相较于原 IEEE 39节点系统,在 修改的 IEEE 39节点系统中,在节点3、4、8、16、18共 新增了5台新能源机组,在节点2和节点4共新增了 2条向其他电网送电的直流线路,负荷大小保持不 变。5台新能源机组在一天24 h的出力变化曲线如 附录 C 图 C2 所示,系统的新能源渗透率变化曲线如 附录 C 图 C3 所示,2个直流系统(HVDC₁和 HVDC₂) 的主要参数如附录 C 表 C1 所示。

4.1 优化结果

HVDC₁和HVDC₂的送端换流母线分别有3条出 线。若换流母线出线发生*N*-1故障,则换流站的多 直流短路比将大幅下降,严重威胁直流系统的稳定 运行,因此,这里考虑系统的7种运行工况,分别是 全接线运行工况、线路1-2发生*N*-1故障工况、线路 2-3发生*N*-1故障工况、线路2-25发生*N*-1故障工 况、线路3-4发生*N*-1故障工况、线路4-5发生*N*-1 故障工况以及线路4-14发生*N*-1故障工况。对优化 调度模型进行求解,7种运行工况的初始概率如附 录C表C2所示。由于初始概率往往不是各种工况 出现的概率,通过多离散场景的分布式鲁棒优化方 法可以在优化运行方式下计及各种场景发生概率的 不确定性。表C2中的优化概率为不确定集合内最 严苛的概率。

各发电机的开机安排如附录C图C4所示。在 11:00,5台新能源机组的出力在一天中最小,仅为 2542 MW。根据11:00下的开机方式,系统中所有同 步机组均保持开机,全网同步发电机的最大可输出 功率为6900 MW,因此,即使在新能源机组出力最 小时,系统仍然能满足负荷和直流系统的需求。在 04:00,新能源机组的出力达到最大,此时机组开机 数量最少,机组G₃₁、G₃₆和G₃₇均不开机,系统强度最 弱。将维持直流系统稳定运行的多直流短路比临界 值设定为1.5^[19]。按照04:00的开机方式,7种运行工 况下2个直流系统的多直流短路比如附录C表C3所 示。由表可知,优化结果对不同*N*-1工况均具有良 好的鲁棒性,在各条线路发生*N*-1故障下,依然可以 保证2个直流系统的多直流短路比不过低,保障直 流系统的稳定运行。

4.2 安全稳定约束对系统决策的影响

对于修改的 IEEE 39节点系统而言,即使在全 开机方式下,短路电流也不存在超标问题。该系统 面临的主要安全稳定问题是系统强度不足带来的静 态电压稳定问题和系统惯量不足引发的频率稳定问 题。若不考虑直流系统多直流短路比约束,则优化 结果将有所变化,主要体现在机组 G₃₀。考虑多直流 短路比约束前后机组 G₃₀开机方式的变化情况如附 录 C图 C5 所示。由图可知,在不考虑多直流短路比 约束时,机组 G₃₀可以在某些时间段停机,运行更经 济,但是系统强度有所下降,尤其是在 02:00—05:00 时间段内,HVDC,的多直流短路比仅为 1.38。

为了分析频率约束对系统调度决策的影响,在 忽略多直流短路比约束的基础上,进一步忽略频率 约束,允许RoCoF最大绝对值为0.2 Hz/s,允许最 大静态频率偏差绝对值为0.15 Hz。优化结果与图 C4有所不同,主要体现在机组G₃₀和G₃₁。在考虑多 直流短路比和频率约束时,机组G₃₀全天均保持开机, 机组G₃₁仅在01:00—05:00时间段不开机;在不考虑 多直流短路比和频率约束时,机组G₃₀和G₃₁仅需要 在部分时间段开机,大幅降低了运行成本。2种方 案下机组G₃₀和G₃₁的开机方式如附录C图C6所示。

根据22:00的优化结果调整系统潮流数据。在 考虑与不考虑多直流短路比和频率约束2种工况下 进行仿真计算。扰动选取为HVDC₂闭锁,仿真结果 如图1所示。由图可知,在不考虑多直流短路比和 频率约束时,扰动发生后系统 RoCoF 和静态频率偏

差均发生越限,机组G₃₀和G₃₁在18:00-24:00时间 段均处于停机状态,降低了系统惯量和调差系数。

4.3 新能源极限渗透率的估计

240

在多直流送出电网中,频率稳定和静态电压稳 定问题较为突出。随着直流功率在总负荷中的占比 和新能源机组占比的提高,系统频率稳定和静态电 压稳定水平降低。为此,利用本文所提方法估计不 同直流外送功率占比下的新能源极限渗透率。具体 方法是不断增加新能源机组容量和实际出力,保持 同步发电机电源配置不变,增加直流系统数量,并通 过调整负荷大小平衡供需关系。在每次改变新能源 机组渗透率后均重新对系统调度方案进行优化求 解,直到优化调度模型无解为止,此时新能源机组渗 透率即为系统最大可接受的新能源极限渗透率。

改变直流外送功率占比,得到系统的新能源极 限渗透率的变化情况,如图2所示。由图可知:若不 考虑多直流短路比和频率约束,则新能源渗透率可达 到很高的数值;在考虑多直流短路比约束后,系统可 接受的新能源极限渗透率不断降低,这是由于直流 功率越大,为保证直流系统稳定运行,就需增强交流 系统强度,考虑到新能源机组无法增大系统短路容 量,只能通过接入大量同步发电机保持直流系统稳 定,从而使系统可承受的新能源极限渗透率降低。

Fig.2 Maximum renewable energy penetration rate under different HVDC send power rates

在同时考虑多直流短路比约束和频率约束后, 系统最终可承受的新能源极限渗透率应取3条曲线 的最小值。可知,在直流外送功率占比较低时,系统 的安全运行主要受到频率失稳的威胁,随着直流外 送功率占比的不断提高,电压失稳成为系统失稳的 主要诱因,而功率平衡对新能源渗透率的约束基本 不起作用。

为了更符合电网规划面临的现实场景,将边界 条件设置为新能源机组装机容量和出力增加,直流 外送功率和负荷也随之增加,常规机组保持不变,系 统规模随着新能源装机容量的增加而增大。直流外 送功率增加时,单一直流系统容量并没有增加,但直 流系统数量增多。在*N*-1校核准则下,系统面临的 最大不平衡功率不会随着直流外送功率占比的提高

而增大,因此,在频率约束下,为抵御直流闭锁带来的 功率冲击所需的同步发电机容量不会改变,这使新 能源极限渗透率随着系统规模的增大而不断提高。 但从静态电压稳定的角度,直流外送功率和负荷的 增加均需增加电压支撑点,否则会出现电压失稳的 情况。在上述计算过程中,新能源机组因定无功功 率为0的控制不会向系统提供电压支撑,而在新能源 渗透率提高的过程中没有新增同步发电机,系统中 的电压支撑点不变,负荷和直流节点对无功功率的 需求却在增加,因此,系统的静态电压稳定性会随着 新能源渗透率的提高而不断降低。综上,在新能源 机组装机容量增加、同步发电机配置保持不变、负荷 增加且最大单一直流系统功率不变的电网规划场景 下,随着新能源渗透率的提高,系统频率稳定性不会 降低,但静态电压稳定性会降低,因此,多直流短路 比约束下系统可承受的新能源极限渗透率降低,而 频率约束下系统可承受的新能源极限渗透率提高。

若提高直流外送功率占比的方式不是增加直流 系统数量,而是增加单一直流系统HVDC₂的输送功 率,则得到的新能源极限渗透率如图3所示。

由图3可知,若直流外送功率占比的提高是通 过增加单一直流系统的输送功率来实现的,则在频 率约束下新能源极限渗透率会随着直流外送功率占 比的提高而不断下降,这是由于在增加单一直流系 统功率后,在*N*-1校核原则下,系统损失功率增加, 系统的频率稳定性下降,从而使系统可承受的新能 源极限渗透率降低。另外,对比图2和图3可知,在 单一直流系统功率增加的边界条件下,多直流短路 比约束下的新能源极限渗透率降低速度加快:在图 2中,直流外送功率占比的提高通过增加直流系统 数量实现,在这种情况下直流系统分散接入不同母 线;而图3中,直流外送功率占比的提高通过增加单 一直流系统的功率实现,对系统静态电压稳定性的 降低作用更加显著。

4.4 新能源无功支撑作用对新能源极限渗透率的 影响

在前文中,新能源机组在有功功率维度采用最

大功率跟踪控制,在无功功率维度采用定无功功率 为0的恒功率控制。在这种控制模式下,新能源机 组不会向系统提供电压支撑,因此,新能源机组渗透 率的提高会降低系统的电压稳定性。实际上,新能 源机组在无功功率维度也可以向系统提供电压支 撑,若新能源机组的q轴采用定交流母线电压控制 的方式,则在正常运行过程内新能源机组端电压可 以保持恒定,从而提高系统的静态电压稳定性。为 探究新能源机组提供电压支撑对新能源极限渗透率 的影响,本节考虑系统中所有新能源机组在无功功 率维度均采用恒电压控制,且新能源机组装机容量 可以保证接入的交流母线电压在负荷增加的过程中 保持恒定。

根据优化调度模型是否有解判定系统是否达到 新能源极限渗透率,在优化调度模型无解时的新能 源渗透率即为系统最大可接受的新能源极限渗透 率。改变直流外送功率占比,得到系统的新能源极 限渗透率,如图4所示。

图4 不同新能源机组控制模式下的新能源极限渗透率

Fig.4 Maximum renewable energy penetration rate under different control modes of renewable energy units

由图4可知,若新能源机组采用恒电压控制,则 多直流短路比约束几乎不起作用,这是由于在静态 条件下新能源机组也可以维持自身端口电压恒定, 和同步发电机的特性没有差异,静态电压稳定性约 束也就失去了效力,另外,由于新能源机组电流限幅 的存在,短路电流和工作电流保持在同一数量级,在 这种情况下,新能源极限渗透率完全取决于频率 约束。

5 结论

多直流送出电网的特点是新能源渗透率高以及 直流外送功率占比高,这导致这类电力系统的频率 和电压失稳风险增大。为保证多直流送出电网的稳 定运行,本文提出一种考虑安全稳定约束的多直流 送出电网优化调度模型,并基于该模型提出一种新 能源极限渗透率估计方法。修改的IEEE 39节点系 统仿真结果表明,本文所提优化调度模型所得结果 对各种 N-1 工况均具有良好的鲁棒性,可以在 N-1 准则下满足系统的安全稳定要求,主要体现在短路 电流不越限,RoCoF和静态频率偏差位于合理范围 内,多直流短路比足够大。同时,仿真结果验证了所 提出的新能源极限渗透率估计方法。

附录见本刊网络版(http://www.epae.cn)。

参考文献:

- [1]郑可轲,牛玉广.大规模新能源发电基地出力特性研究[J]. 太阳能学报,2018,39(9):2591-2598.
 ZHENG Keke, NIU Yuguang. Research on renewable power basement output characteristics[J]. Acta Energiae Solaris Sinica,2018,39(9):2591-2598.
- [2]陈义宣,肖亮,李玲芳,等.异步联网下多直流送出系统的功率 稳定性分析及评价标准[J].高电压技术,2019,45(1):243-251.
 CHEN Yixuan,XIAO Liang,LI Lingfang, et al. Analysis and evaluation criterion of power stability for asynchronously interconnected multi-send HVDC systems[J]. High Voltage Engineering,2019,45(1):243-251.
- [3] 贺杨烊,郑晓冬,邰能灵,等.交直流混联电网LCC-HVDC换流 器建模方法综述[J].中国电机工程学报,2019,39(11):3119-3130.

HE Yangyang, ZHENG Xiaodong, TAI Nengling, et al. A review of modeling methods for LCC-HVDC converter in AC / DC hybrid power grid[J]. Proceedings of the CSEE, 2019, 39 (11);3119-3130.

 [4] 樊鑫,郭春义,杜夏冰,等.特高压混合级联直流输电系统抑制 逆变站后续换相失败的无功功率调控方法[J].电网技术, 2021,45(9):3443-3452.
 FAN Xin,GUO Chunyi,DU Xiabing, et al. Reactive power coordinated control approach for suppressing subsequent commutation failure of inverter station in hybrid cascaded UHVDC

system[J]. Power System Technology, 2021, 45(9): 3443-3452.
 [5] 李明节,陈国平,董存,等.新能源电力系统电力电量平衡问题

- [5] 早奶店,兩百千,並行,等:新記述电方示式电方电量+萬內运 研究[J]. 电网技术,2019,43(11):3979-3986.
 LI Mingjie, CHEN Guoping, DONG Cun, et al. Research on power balance of high proportion renewable energy system [J]. Power System Technology,2019,43(11):3979-3986.
 [6] 孟凡成,郭琦,康宏伟,等: 计及集中式和分布式新能源的电力
- [6] 孟八成,郭坷,康宏伟,寺. 计及集中式和分布式新能源的电力 系统连锁故障模拟[J]. 高电压技术,2022,48(1):189-201. MENG Fancheng, GUO Qi, KANG Hongwei, et al. Cascading failure simulation for power system with utility-scale and distributed renewable energy[J]. High Voltage Engineering,2022, 48(1):189-201.
- [7] 王天航,王艺博,尹立敏,等.两级电力市场环境下考虑条件风险价值的新能源场站最优售电模型[J].电力自动化设备,2023,43(5):113-120.
 WANG Tianhang, WANG Yibo, YIN Limin, et al. Optimal power sales model for new energy stations considering conditional value-at-risk in two-level electricity market[J]. Electric Power Automation Equipment,2023,43(5):113-120.
- [8] 谢小荣,贺静波,毛航银,等. "双高"电力系统稳定性的新问题 及分类探讨[J]. 中国电机工程学报,2021,41(2):461-475.
 XIE Xiaorong, HE Jingbo, MAO Hangyin, et al. New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE,2021,41(2):461-475.
- [9] 向加佳,刘建华,朱雪松,等. 基于分布鲁棒优化的光伏电站并 网极限容量研究[J]. 电力建设,2016,37(6):151-156. XIANG Jiajia,LIU Jianhua,ZHU Xuesong, et al. Research on capacity limit of grid-connected photovoltaic power station

based on distributional robust optimization [J]. Electric Power Construction, 2016, 37(6):151-156.

- [10] 周任军,黄灵资,王靓,等. 基于风险和条件风险方法的光伏电 站并网极限容量计算[J]. 电力自动化设备,2012,32(6):1-5. ZHOU Renjun, HUANG Lingzi, WANG Liang, et al. Capacity limit calculation based on risk and conditional risk method for grid-connected photovoltaic power station[J]. Electric Power Automation Equipment,2012,32(6):1-5.
- [11] 王一波,许洪华. 基于机会约束规划的并网光伏电站极限容量 研究[J]. 中国电机工程学报,2010,30(22):22-28.
 WANG Yibo,XU Honghua. Research of capacity limit of gridconnected photovoltaic power station on the basis of chanceconstrained programming[J]. Proceedings of the CSEE, 2010, 30(22):22-28.
- [12] 雷亚洲,王伟胜,印永华,等. 基于机会约束规划的风电穿透功 率极限计算[J]. 中国电机工程学报,2002,22(5):32-35.
 LEI Yazhou,WANG Weisheng,YIN Yonghua, et al. Wind power penetration limit calculation based on chance constrained programming[J]. Proceedings of the CSEE,2002,22(5):32-35.
- [13] 赵珊珊,周勤勇,赵强,等. 计及频率约束的风电最大接入比例 研究[J]. 中国电机工程学报,2018,38(增刊1):24-31.
 ZHAO Shanshan, ZHOU Qinyong, ZHAO Qiang, et al. Research on maximum penetration level of wind generation considering frequency constraint[J]. Proceedings of the CSEE, 2018,38(Supplement 1):24-31.
- [14] 周海强,鲁锦文,薛峰,等. 计及风电综合惯性控制的电力系统 扩展频率响应模型[J]. 电力系统自动化,2023,47(8):198-205.
 ZHOU Haiqiang,LU Jinwen,XUE Feng, et al. Extended frequency response model for power system considering wind power synthetic inertia control[J]. Automation of Electric Power Systems,2023,47(8):198-205.
- [15] 刘福锁,卿梦琪,唐飞,等. 计及风电一次调频和频率约束的风 电占比极限值计算[J]. 电网技术,2021,45(3):863-870. LIU Fusuo,QING Mengqi,TANG Fei,et al. Limit proportion calculation of wind power considering primary frequency modulation and frequency constraints[J]. Power System Technology,2021,45(3):863-870.

[16] 喻哲扬,张君黎,徐政. 非同步机电源渗透率对同步机之间功 角稳定性影响的简化模型分析[J]. 电力自动化设备,2020,40 (9):88-97.

YU Zheyang,ZHANG Junli,XU Zheng. Simplified model analysis of influence of penetration rate of non-synchronous generator source on angle stability of synchronous generators [J]. Electric Power Automation Equipment, 2020, 40(9);88-97.

 [17] 叶茂,刘艳,顾雪平,等.大停电背景下考虑系统暂态安全的动态风电穿透功率极限计算[J].电力自动化设备,2018,38(11): 167-173.

YE Mao, LIU Yan, GU Xueping, et al. Calculation of dynamic wind power penetration limit considering system transient safety under background of blackout[J]. Electric Power Automation Equipment, 2018, 38(11):167-173.

- [18] 徐岩,闫少波,史迪锋.基于近似线性规划法的弱电网光伏穿 透功率极限计算[J].电力自动化设备,2014,34(4):128-132.
 XU Yan,YAN Shaobo,SHI Difeng. Power penetration limit calculation based on approximate linear programming for PV power station in weak grid[J]. Electric Power Automation Equipment,2014,34(4):128-132.
- [19] 黄弘扬,徐政,许烽. 多馈入直流输电系统短路比指标的有效 性分析[J]. 电力自动化设备,2012,32(11):46-50.
 HUANG Hongyang,XU Zheng,XU Feng. Effectiveness of short circuit ratio index for multi-infeed HVDC system[J]. Electric Power Automation Equipment,2012,32(11):46-50.

作者简介:

陈义宣(1982—),男,高级工程师,硕士,主要研究方向 为电力系统安全稳定与控制、电网规划(E-mail:cyxnhm@qq. com);

王国腾(1996—),男,博士,主要研究方向为高比例可再 生能源电力系统运行与控制(E-mail:wgt339@zju.edu.cn);

黄 莹(1977—),女,教授,博士,研究方向为直流输电、 新型电力系统稳定分析与控制(E-mail:huangyingzju@zju. edu.cn)。

(编辑 王锦秀)

Estimation method of maximum renewable energy penetration rate for multi-send HVDC system considering security and stability constraints

CHEN Yixuan¹, WANG Guoteng², LI Lingfang¹, YOU Guangzeng¹, SUN Peng¹, HUANG Ying², XU Zheng²

(1. Planning and Research Center of Yunnan Power Grid Co., Ltd., Kunming 650011, China;

2. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract: The line commutated converter based high voltage direct current (HVDC) system is an important technical means for sending power generated by large energy bases. However, the increase of renewable energy penetration will reduce the security and stability of sending-end power grid. In order to guarantee the safe and stable operation of multi-send HVDC system, an estimation method of maximum renewable energy penetration rate affordable by the multi-send HVDC system is proposed considering the security and stability constraints. The expressions of various security and stability constraints are derived, including short circuit current constraint, multi-HVDC short circuit ratio constraint, and the frequency stability constraint. An optimal scheduling model for multi-send HVDC system is established considering the security and stability constraints. A piecewise linearization method for optimal scheduling model is presented, based on which an estimation method for the maximum renewable energy penetration rate is proposed. The simulative results of a modified IEEE 39-bus system verify the effectiveness of the proposed method.

Key words: multi-send HVDC system; security and stability constraints; maximum renewable energy penetration rate; line commutated converter; piecewise linearization

Fig.A1 Topology diagram of the sending-end power grid with multiple HVDC systems

注: $E''_{j(0)}$ 代表发电机 j的次暂态电动势, X''_{dj} 代表机组 j的次暂态电抗,

ZLk代表负荷 k的等值阻抗。

图 A2 短路电流计算示意图

Fig.A3 Flowchart of the maximum new energy penetration rate estimation method for sending-end power grids

附录 B

系统的安全运行约束包括:

1) 功率平衡约束

$$\sum_{i=1}^{N_s} P_{g}^{i,t,k} + \sum_{j=1}^{N_n} P_{n}^{j,t} = \sum_{l=1}^{N_l} P_{l}^{l,t} + \sum_{d=1}^{N_d} P_{dc}^{d,t}, t \in [1,T], k \in [1,N_s+1]$$
(B1)

式中, N_n 为新能源机组的数量, N_l 为负荷数量, N_d 为直流数量, $P_g^{i,t,k}$ 为同步机 i在时刻 t与场景 k下的输出功率, $P_l^{l,t}$ 为负荷 l在时刻 t的大小, $P_{dc}^{d,t}$ 为直流 i在时刻 t的大小。

2) 同步机出力约束

$$P_{gl}^{i}y^{i,t} \le P_{g}^{i,t,k} \le P_{gu}^{i}y^{i,t}, i \in [1, N_{g}], t \in [1, T], k \in [1, N_{s} + 1]$$
(B2)

式中, Pⁱ_{gl}为同步机 i 出力下限, Pⁱ_{gu}为同步机 i 出力上限。

3) 同步机爬坡率约束

$$-V_{\rm D}^{i} \le P_{\rm g}^{i,t,k} - P_{\rm g}^{i,t-1,k} \le V_{\rm U}^{i}, i \in [1, N_{\rm g}], t \in [1, T], k \in [1, N_{\rm s} + 1]$$
(B3)

式中, V_Uⁱ、V_Dⁱ分别为同步机 i 最大上坡率和最小下坡率。

4) 最小开/关时间限制

$$\begin{cases} -y^{i,t-1} + y^{i,t} - y^{i,j} \le 0, \\ i \in [1, N_g], t \in [1, T], j \in [t, T_{up} + t - 1] \\ y^{i,t-1} - y^{i,t} + y^{i,j} \le 1, \\ i \in [1, N_g], t \in [1, T], j \in [t, T_{down} + t - 1] \end{cases}$$
(B4)

式中, T_{up} 是同步机的最小开机时间, T_{down}是同步机的最小关停时间。

5) 同步机的启动和关机约束

$$\begin{cases} -y^{i,t-1} + y^{i,t} - o^{i,t} \le 0, i \in [1, N_g], t \in [1, T] \\ y^{i,t-1} - y^{i,t} - u^{i,t} \le 0, i \in [1, N_g], t \in [1, T] \end{cases}$$
(B5)

6) 安全稳定约束

根据第1节的介绍,这里将安全稳定约束重写如下:

$$\sum_{i=1}^{N_g} \Delta I_{\text{short}}^{b,i} y^{i,t} \le \alpha I_{\max}^b, b \in [1, N_b], t \in [1, T]$$
(B6)

$$\sum_{i=1}^{N_g} \Delta I_{\text{short}}^{b,i} U_{\text{rate}}^b y^{i,t} \ge \left(P_{\text{dc}}^d + \sum_{j \neq i} F_{\text{MIIF}}^{d,c} P_{\text{dc}}^c \right) R_{\text{crt}}, d \in [1, N_{\text{d}}], t \in [1, T]$$
(B7)

$$\sum_{i=1}^{N_s} S_{\rm B}^i H^i y^{i,t} \ge \frac{\Delta P_{\rm dc}^{\rm max}}{2\nu_{\rm Rc}}, t \in [1,T]$$
(B8)

$$\sum_{i=1}^{N_s} S_{\rm B}^i \left(D^i + K^i \right) y^{i,t} \ge \frac{\Delta P_{\rm dc}^{\rm max}}{\Delta f_{\rm sc}}, t \in \left[1, T \right]$$
(B9)

式中, N_b为系统中所有母线的数量, N_d为换流母线的数量。式(B6)为所有母线的短路电流约束,式(B7)为所有直流的多直流短路比约束,式(B8)为 RoCof 约束,式(B9)为静态频率偏差约束。

由式(13)-(15)、(B1)-(B9)组成的优化调度模型中含有非线性项,难以直接调用商业软件求解。为此,下面对优化调度模型进行线性化,从而方便求解。对于离散场景概率约束(14),可以将其线性化为约束(B10):

$$\begin{cases} p^{s} \ge 0, \quad \forall s \\ \sum_{s=1}^{N_{s}+1} p^{s} = 1 \\ \sum_{s=1}^{N_{s}+1} \lambda^{s} \le \theta_{1} \\ \lambda^{s} \le \theta_{\infty}, \forall s \end{cases}$$
(B10)

其中,变量 λ^s 需满足式(B11).

$$\begin{cases} p^{s} - p_{0}^{s} \leq \lambda^{s} \\ p_{0}^{s} - p^{s} \leq \lambda^{s} \\ \lambda^{s} \leq p^{s} - p_{0}^{s} + (1 - x^{s})M, i \in [1, N_{s} + 1] \\ \lambda^{s} \leq -p^{s} + p_{0}^{s} + x^{s}M \\ x^{s} \in \{0, 1\} \end{cases}$$
(B11)

式中, M 为一个很大的正数。

而优化目标(13)中含有双线性项 *B*_T,如式(B12)所示,这也是导致优化调度模型非线性的重要因素。下面采用大 *M* 法对双线性项进行线性化。

$$B_{\rm T} = \sum_{s=1}^{N_{\rm g}+1} p^s \left(\sum_{t=1}^T \mathbf{d}^T \boldsymbol{P}_{\rm g}^t \right)$$
(B12)

连续变量 p^s可以被转换成 0-1 变量组合的形式:

$$\begin{cases} p^{s} = \tau \sum_{k=1}^{m} 2^{j} e^{s,k}, \forall s \\ e^{s,k} \in \{0,1\}, \forall k \end{cases}$$
(B13)

从而将双线性项转换为线性表达式:

$$\begin{cases} p^{s} P_{g}^{i,t} = \tau \sum_{k=1}^{m} 2^{k} \varphi^{k,i,s,t} \\ -e^{s,k} M \leq \varphi^{k,i,s,t} \leq e^{i,k} M \\ P_{g}^{i,t} - M \left(1 - e^{s,k}\right) \leq \varphi^{k,s,i,t} \leq P_{g}^{i,t} + M \left(1 - e^{s,k}\right) \end{cases}$$
(B14)

式中, φ为辅助变量。

另外,将一个连续变量离散化势必会产生一定的误差,因此,对于式(B14)中的等式约束,通常难以 满足要求,为此增加一个松弛因子 *ξ*,将式(B14)中的等式约束写为:

$$\begin{cases} p^{s} = \tau \sum_{k=1}^{m} 2^{k} e^{s,k} + \xi^{s} \\ -\tau \leq \xi^{s} \leq \tau \end{cases}, s \in [1, N_{s} + 1] \end{cases}$$
(B15)

最终,初始的优化调度问题被转换成了一个混合整数规划问题。

图 C1 修改的 IEEE 39 节点系统拓扑结构示意图

Topology diagram of the modified IEEE 39-bus system

图 C3 新能源渗透率变化曲线

表 C1 直流系统主要参数

Table C1 Main parameters of the two HVDC systems

参数名称	HVDC1	HVDC ₂
额定有功功率/MW	2000	1000
额定直流电压/kV	500	500
额定直流电流/kA	4	2
直流线路电阻 /Ω	3.17	2.25
全开机方式下多直流短路比	4.56	5.78

附录 C

Table C2	le C2 Initial probability and optimization probability of operating conditions			
	工况名称	初始概率	优化概率	
	全接线	0.42	0.43	
	线路 1-2 发生 <i>N</i> −1	0.09	0.12	
	线路 2-3 发生 <i>N</i> −1	0.09	0.10	
	线路 2-25 发生 <i>N</i> −1	0.11	0.08	
	线路 3-4 发生 N-1	0.09	0.11	
	线路 4-5 发生 <i>N</i> −1	0.09	0.07	
	线路 4-14 发生 <i>N</i> −1	0.11	0.09	

表 C2 运行工况初始概率与优化概率 Initial probability and optimization probability of operating conditions

Fig.C4 Unit combination results considering multiple operating conditions

表 C3 04:00 多种工况下直流系统的多直流短路比

Table C3 Multi-infeed short circuit ratio of the HVDC system under various operating conditions at 04:00

HVDC ₁	HVDC ₂
2.61	4.11
1.94	4.19
1.61	3.85
1.61	4.41
2.51	2.72
2.75	2.82
2.76	3.07
	HVDC ₁ 2.61 1.94 1.61 1.61 2.51 2.75 2.76

Fig.C5 Operation status of unit G₃₀ before and after considering multi-infeed short circuit ratio constraints

图 C6 考虑多直流短路比和频率约束前后机组 G_{30} 和 G_{31} 的运行状态

Fig.C6 Operation status of units G₃₀ and G₃₁ before and after considering multi-infeed short circuit ratio and frequency constraints