引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 826次   下载 382  
基于最大信息系数和多目标Stacking集成学习的综合能源系统多元负荷预测
崔树银, 汪昕杰
上海电力大学 经济与管理学院,上海 200090
摘要:
精确的多元负荷预测对于综合能源系统的能源调度与运行规划起到重要的作用。对电、热、冷负荷单独进行预测的传统方法会忽略多元负荷间的耦合关系。针对这一问题,提出一种基于多目标Stacking集成学习的多元负荷协同预测模型。引入最大信息系数对多元负荷及天气因素进行相关性分析,并提出负荷耦合形态指标来深度挖掘多元负荷间的耦合关系;将多目标回归与Stacking集成学习模型相结合,建立多元负荷协同预测模型;通过实际算例验证所提模型的有效性,算例结果表明,与其他预测模型相比,所提模型预测精度更高。
关键词:  多目标回归  Stacking集成学习  综合能源系统  最大信息系数  正则化贪心森林算法
DOI:10.16081/j.epae.202202025
分类号:TM715
基金项目:国家自然科学基金资助项目(71972127)
Multivariate load forecasting in integrated energy system based on maximal information coefficient and multi-objective Stacking ensemble learning
CUI Shuyin, WANG Xinjie
School of Economics and Management, Shanghai University of Electric Power, Shanghai 200090, China
Abstract:
The accurate multivariate load forecasting plays an important role in energy dispatching and operation planning of integrated energy system. Traditional methods for forecasting electrical, thermal, and cooling loads separately ignore the coupling relationship between multivariate loads. In order to solve this problem, a multivariate load collaborative forecasting model based on multi-objective Stacking ensemble learning is proposed. The maximal information coefficient is introduced to analyze the correlation between multivariate load and weather factors, and the load coupling morphological index is proposed to deeply explore the coup-ling relationship between multivariate loads. Then, the multi-objective regression and Stacking ensemble learning model are combined to establish the multivariate load cooperative forecasting model. A practical example is given to verify the effectiveness of the proposed model, and the results of numerical examples show that the forecasting accuracy of the proposed model is higher than that of other forecasting models.
Key words:  multi-objective regression  Stacking ensemble learning  integrated energy system  maximal information coefficient  regularized greedy forest algorithm

用微信扫一扫

用微信扫一扫