引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 343次   下载 247  
高压电抗器绕组和铁芯机械故障的混沌特性分析与特征识别
马宏忠1, 侯鹏飞1, 严岩1, 吴金利1, 陈轩2, 朱超2
1.河海大学 能源与电气学院,江苏 南京 211100;2.国网江苏省电力有限公司检修分公司,江苏 南京 211102
摘要:
首先,根据Kolmogorov熵判断高压并联电抗器振动信号的混沌特性,在证明其具有混沌特性的基础上重构振动信号,分析不同电压等级、不同故障类型和故障程度下振动信号相轨迹的变化规律。然后,将最大Lyapunov指数、Kolmogorov熵、关联维数作为一组混沌指标定量计算和表征高压并联电抗器绕组和铁芯发生机械故障前、后振动信号混沌特性。最后,利用多混沌指标构建特征空间进行故障识别,并与已有的高压并联电抗器故障识别方法进行对比验证多混沌特征空间识别故障的优越性。分析结果表明,多混沌特征空间能够准确实现无监督在线故障识别,其准确率比已有方法至少高5 %。
关键词:  电抗器  绕组  铁芯  故障识别  振动信号  混沌分析  特征空间
DOI:10.16081/j.epae.202202012
分类号:TM47
基金项目:中央高校基本科研业务费专项资金资助项目(B200203128);国网江苏省电力有限公司重点科技项目(J2018014);江苏省研究生科研与实践创新计划项目(KYCX20_0431)
Chaotic characteristic analysis and feature recognition of mechanical failure of high voltage reactor winding and iron core
MA Hongzhong1, HOU Pengfei1, YAN Yan1, WU Jinli1, CHEN Xuan2, ZHU Chao2
1.College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China;2.Maintenance Branch Company of State Grid Jiangsu Electric Power Co.,Ltd.,Nanjing 211102, China
Abstract:
Firstly, the chaotic characteristics of the vibration signals of high-voltage shunt reactor are judged according to the Kolmogorov entropy. On the basis of proving the chaotic characteristics of the vibration signals, the vibration signals are reconstructed, and the change law of phase trajectory under different voltage levels, fault types and fault levels is analyzed. Then, the maximum Lyapunov exponent, Kolmogorov entropy and correlation dimension are used as a set of chaotic indices to quantitatively calculate and characterize the chaotic characteristics of the vibration signals before and after the mechanical fault of high-voltage shunt reactor’s winding and iron core. Finally, the multiple chaotic indices are used to construct a feature space for fault identification, and the superiority of multiple chaotic feature space in fault identification is verified by comparing with existing fault identification methods. The verification results show that the multi-chaotic feature recognition space can accurately realize unsupervised online fault recognition, and its accuracy rate is at least 5 % higher than that of the existing methods.
Key words:  electric reactors  electric windings  iron cores  fault identification  vibration signal  chaos analysis  feature space

用微信扫一扫

用微信扫一扫