包含可控负荷的微电网经济调度

童小娇^{1,2}, 尹 昆¹, 刘亚娟¹, 周 鹏¹ (1. 长沙理工大学 电气与信息工程学院, 湖南 长沙 410004; 2. 湖南第一师范学院, 湖南 长沙 410205)

摘要:针对大规模风电并网给电力系统带来的影响,应用需求侧响应的能量管理策略,建立用户与微电网管 理方的双层优化调度模型。上层根据用户侧可控负荷的特性和运行特征,将所有的可控负荷分成4类,目标 函数为4类可控负荷总的用电成本最小;下层优化目标函数是在满足供电可靠性要求的条件下使总的供电 成本最小。通过KKT条件将双层优化转化成一个单层优化问题对模型进行求解。某微电网的数值实验结果 证明了所提模型与算法的有效性。

关键词: 可控负荷; 优化; 微电网; 风电; 经济调度 中图分类号: TM 732 文献标识码: A

0 引言

微电网是一种由负荷和微电源(microsources) (即微电网中的分布式电源)及储能装置共同组成的 有机系统,与常规的分布式电源直接并网相比,微电 网灵活、系统地将分布式电源与本地负荷组为一个 整体^[1]。微电网作为一种新型能源网络化供应与管 理技术,便于分布式能源的接入,同时可实现需求侧 管理及现有能源的最大化利用。然而一些分布式电 源出力的随机性、波动性、不可调度性,例如风力发 电和光伏发电,造成了不可控制和难以管理的局面, 可能引起相应的电能质量、电网安全性和稳定性等 诸多问题。

随着通信、智能电表和其他科学技术的发展,为 了解决风电并网给系统带来的安全性等问题,近年 来,可控负荷的应用得到了快速的发展。可控负荷可 以由电力公司直接控制其运行状态,或者利用经济 措施诱导用户有选择性地控制其负荷曲线,进而达 到减少电力建设投资、改善电力系统运行的经济性 和可靠性、减少用户的用电支出、维护用户舒适度、 降低污染物的排放等目的[2]。文献[3]对用户负荷进 行了分类,把负荷分成了四大类,在对实时电价进行 预测的基础上,目标函数同时考虑了负荷成本和用 户的舒适度;文献[4]中刻画了家庭里恒温原件的数 学模型,假设电力价格已知,通过对可控负荷在某个 时刻运行与否进行调节,降低了用户的成本,提高了 用户的舒适度;文献[5]假设电价在1~2h前可以通 过预测得到,通过对负荷在某个时刻运行与否进行 调节,降低了用户的成本和负荷的峰值。可控负荷是

收稿日期:2014-12-17;修回日期:2015-08-16

DOI: 10.16081/j.issn.1006-6047.2015.10.004

一种重要的资源,但随着电力市场化的出现和电力 系统越来越大、越来越复杂,分层协调决策成为系统 优化决策的重要方式,此时传统的单目标或多目标 优化模型无法解决这类系统的经济调度问题,双层 优化模型开始进入人们的视野。

双层优化具有上下层"有机结合"的特点,该方 法最大的优点在于找到一个各方面协调的解。现已 有一些电力专家学者开始关注双层规划的应用:文 献[6]考虑恐怖袭击的问题,上层以电网损失最大化 为目标函数,决策变量是对系统某条线路袭击与否, 下层是系统管理方通过对负荷、机组等变量进行控 制,以恐怖袭击对电网的影响最小为目标;文献[7] 考虑发电商最优供给的问题,上层优化问题描述发 电商生产效益最大化问题,下层优化是基于最优潮 流的市场最优化调度问题:文献[8]考虑的是能效电 厂优化配置问题,上层模型以输电系统投资和能效 电厂投资的总成本最小为目标,下层模型以能效电 厂投资成本最小为目标。电力系统中存在大量的优 化问题,但双层优化在电力系统的应用才刚刚开始, 推广双层规划在电力系统的应用对于保障我国电力 系统的安全经济运行具有重要意义。

本文考虑微电网的经济调度问题。为了保持功 率的实时平衡,传统的方法主要是在供电侧考虑旋 转备用,但随着电力市场化的出现和科学技术的发 展,供电侧和用户侧都能参与这项经济活动。供电 侧和用户侧是2个既独立又有一定联系的主体,其 中独立是指供电侧只能决策自己的变量,不能决策 用户侧的变量,用户侧一样;联系是指供电侧和用户 侧必须共同满足功率的实时平衡。在满足功率实时 平衡的前提下,若2个主体独立决策自己的变量, 不相互协调,往往会造成各自成本不是最优。在上述 背景下,本文在微电网中构建了供需双层优化模型,

基金项目:国家自然科学基金资助项目(71371065,11171095) Project supported by the National Natural Science Foundation of China(71371065,11171095)

上层考虑的是用户侧利益,下层考虑的是供电方的 总成本,实时电价为上下2层联系的桥梁,下层功率 平衡等式的拉格朗日系数作为实时电价。在文献[9] 所提模型的基础上,上层考虑的是用户侧利益,但增 添了带蓄电池的电动汽车这类可控负荷,这类负荷 由于受到国家政策的鼓励,在日常生活的应用越来 越普遍,因此考虑这类负荷具有非常重要的现实意 义,目标函数为可控负荷总成本值最小:下层考虑的 是供电侧的利益,供电源除了可控的分布式电源 (柴油机组),还增添了与公共主网的联系和不可控 分布式电源(风力发电),针对不可控分布式电源出 力的不确定性,运用文献[10]中的方法求解不可控 分布式电源出力,下层优化模型的目标函数是总的 供电成本最小。本文在文献[9]的基础上,上下2层都 考虑了一些新的因素,尽管增添了求解优化的难 度,但使规划的优化问题更加全面和贴近实际。

1 微电网双层优化经济调度建模

本文考虑用户侧和微电网供电方 2 个不同层面 的优化问题,既优化用户侧成本,也考虑供电的经济 性。上层优化基于用户侧建模,以可控负荷在各个时 段的运行状态为变量,采用用户侧可控负荷总成本 为优化目标,将可控负荷在各个时段的决策方案传 递给下层;下层优化考虑管理侧,以供电成本为目标 进行优化,得到供电源出力的优化配置结果,并将由 下层功率平衡等式计算得到的电价返回给上层模 型;上层模型再次进行优化规划。如此反复交替进 行,实现上下层的交互作用,最终由上层决策,得到 兼顾用户侧和供电侧两方利益的规划。

随着智能电表等新型智能化设备的出现,用户 把自己的用电需求通过智能电表传递给集控中心, 集控中心综合用户侧和供电侧的信息做出决策,并 利用智能电表来调节可控负荷在各个时段的运行状态,这是一种直接负荷控制的方法。

1.1 用户侧上层优化模型

本文上层优化模型考虑用户侧的利益,根据可 控负荷的不同特性和运行特征,将用户侧所有的可 控负荷分成了4类,并用数学表达式对其特性进行 了刻画。与文献[9]比较,模型中增添了电动汽车类 负荷。电动汽车含有电池,能进行充放电,与传统负 荷的特性完全不同,但在日常生活中使用越来越广 泛,因此考虑此类具有很强的现实意义,上层优化模 型的目标函数为可控负荷的总成本最小。

(1)目标函数。

上层优化模型的目标函数为用户侧可控负荷总 成本最小:

$$\min f_1(\boldsymbol{x}) = \sum_{i=1}^{T} \mu_i \left(\sum_{j \in J} x_{j,i}^1 P_j^1 + \sum_{k \in K} x_{k,i}^2 P_k^2 + \sum_{n \in N} P_{n,i}^3 + \sum_{z \in Z} P_{z,i}^d \right)$$
(1)

 $\mathbf{x} = (x_{j,t}^{1}, x_{k,t}^{2}, P_{n,t}^{3}, x_{1,z,t}^{d}, x_{2,z,t}^{d}, x_{1,z,t}^{c}, x_{2,z,t}^{c})$

 $P_{z,t}^{d} = x_{1,z,t}^{d} P_{1,z}^{d} + x_{2,z,t}^{d} P_{2,z}^{d} + x_{1,z,t}^{c} P_{1,z}^{c} + x_{2,z,t}^{c} P_{2,z}^{c}$

其中,fi为用户侧可控负荷总成本;x为上层决策变 量;T为时间段数; μ_i 为t时段的电价;J为第一类负 荷的指数集合;xl,为第一类负荷中第 j 种在 t 时段 的开关变量(0-1 变量);P¦为第一类可控负荷中第 j 种的额定功率;K 为第二类负荷的指数集合;x²_k 为 第二类负荷中第 k 种在 t 时段的开关变量 (0-1 变 量): P_k^2 为第二类可控负荷中第 k 种的额定功率:N 为第三类负荷的指数集合: P_n^3 ,为第三类负荷中第 n种在 t 时段的功率消耗,为连续变量; Z 为第四类负 荷的指数集合;x1,z,为第z种电动汽车在t时段进行 平稳放电的开关变量(0-1变量);x2zzi为第z种电动 汽车在 t 时段进行快速放电的开关变量(0-1 变量): x_{1,z_t}^{c} 为第 z 种电动汽车在 t 时段进行平稳充电的开 关变量(0-1 变量); x_{2z}^{e} 为第z种电动汽车在t时段进 行快速充电的开关变量(0-1变量): $P_{1,z}^{d}$ 为第 z 种电 动汽车平稳放电的功率,为负值;P_{2.z}为第z种电动 汽车快速放电的功率,为负值;P_{1.z}为第z种电动汽 车平稳充电的功率,为正值;P₅,为第z种电动汽车 快速充电的功率,为正值; P_{z_t} 为第 z 种电动汽车在 t 时段的充电功率(为正值表示充电,为0表示既不充 电也不放电,为负值表示放电)。

(2)约束条件。

参考文献[9]对负荷的描述,分别对4类可控负 荷的特性和运行特征进行数学刻画。

①第一类负荷:例如洗碗机、洗衣机等,此类家 居负荷一次操作由几个固定的动作组成,例如洗衣 机由搅、甩、烘等几个动作组成,假设一个动作需要 运行一个相同的时段,运行时段消耗的功率为额定 值,因此完成一次操作需要几个时段,但这几个时段 不必为连续的。其约束表达如下:

$$\sum_{i=1}^{T} x_{j,i}^{1} = H_{j}^{1} \quad \forall j \in J$$
(2)

其中,H_i为第一类负荷中第 j 种完成一次操作所要求的时段数。

②第二类负荷:例如冰箱、冷柜、空调,此类负荷 为保持一定温度,要求在任一连续时段内运行一定的 时间,运行时段消耗的功率为额定值。其约束如下:

 $x_{k,t}^{2}+x_{k,t+1}^{2}+\dots+x_{k,t+b_{t}}^{2} \ge a_{k}^{2}$ $t=1,2,\dots,t_{\max}-b_{k}^{2}+1$ (3) 其中, b_{k}^{2} 为第二类负荷中第 k 种所设定的连续时间 长度; a_{k}^{2} 为第二类负荷中第 k 种所设定的连续时间 长度 b_{k}^{2} 内必须运行时段数。

③第三类负荷:例如抽水泵、热水器等,此类负荷消耗能量的总数有限制,但每个时段消耗的功率

不再为额定值,为一个连续变量。其约束如下:

$$E_n^{\min} \leqslant \sum_{i=1}^{l} P_{n,i}^3 \leqslant E_n^{\max} \tag{4}$$

 $0 \leq P_{n,i}^{3} \leq P_{n,\max}^{3}$ $n \in N$ (5) 其中, $P_{n,\max}^{3}$ 为第三类负荷中第n种消耗的最大功率 值; E_{n}^{\min} 为第三类负荷中第n种设定的最小能量值; E_{n}^{\max} 为第三类负荷中第n种所能消耗的最大能量值。

④第四类负荷:例如电动汽车,此类负荷含有电 池元器件,能够进行充放电,且充放电各有2种运行 方式(快速和平稳),因此共有5种运行方式,即快速 充电、快速放电、平稳充电、平稳放电、不充不放,但 在各个时段只能进行5种方式中的一种。电池具有 储能特性,它在当前时段具有的能量与前一时段的 末端时刻具有的能量和这个时段的运行方式这2个 因素有关,考虑到电池的容量和寿命,电池在各个时 段的能量在一定的范围内。由于电动汽车车主有日 常出行的需要,所以要求在一个时段的最后时刻储 备一定的能量。约束如下.

$$e_z(t) = e_z(t-1) + P_z^{d}(t) \quad z \in \mathbb{Z}$$
(6)

$$E_{z,\min} \leqslant e_z(t) \leqslant E_{z,\max} \tag{7}$$

$$x_{1,z,\iota}^{d} + x_{2,z,\iota}^{d} + x_{1,z,\iota}^{c} + x_{2,z,\iota}^{c} \leqslant 1$$
(8)

$$e_z(T) \ge E_{z,\text{end}} \tag{9}$$

其中, $e_z(t)$ 为第 z 种电动汽车在 t 时段所具有的电量; $E_{z,end}$ 为满足电动汽车车主日常出行所需要的能量值, 为一个常数; $e_z(T)$ 为第 z 种电动汽车在末端时刻所具 有的能量; $e_z(0)$ 为第 z 种电动汽车初始状态所具有的 能量,本文考虑 $e_z(0)$ 为额定容量的 50%; $E_{z,min}$ 为考 虑到电池的寿命,第 z 种电动汽车电池必须贮备一定 的能量,本文考虑 $E_{z,min}$ 为额定容量的 20%; $E_{z,max}$ 为第 z 种电动汽车电池的额定容量。

(3)操作时间限制:

$$\begin{cases} x_{j,t}^{1} \in \{0,1\} | t \in \Omega_{j} \\ x_{j,t}^{1} = 0 | t \notin \Omega_{j} \end{cases} \quad \forall j \in J$$

$$(10)$$

$$\begin{cases} x_{k,t}^2 \in \{0,1\} | t \in \Omega_k \\ x_{k,t}^2 = 0 | t \notin \Omega_k \end{cases} \quad \forall k \in K$$

$$(11)$$

$$\begin{cases} x_{1,z,t}^{d}, x_{2,z,t}^{d}, x_{1,z,t}^{c}, x_{2,z,t}^{c} \in [0,1] | t \in \Omega_{z} \\ x_{1,z,t}^{d}, x_{2,z,t}^{d}, x_{1,z,t}^{c}, x_{2,z,t}^{c} = 0 | t \notin \Omega_{z} \end{cases} \quad \forall z \in Z$$
(12)

$$\begin{bmatrix}
P_{n,t}^{3} \in [0, P_{n,\max}^{3}] | t \in \Omega_{n} \\
P_{n,t}^{3} = 0 | t \notin \Omega_{n}
\end{bmatrix} \forall n \in N$$
(13)

其中, Ω_j 为第一类负荷中第j种在T个时段中所定义 的区间; Ω_k 为第二类负荷中第k种在T个时段中所 定义的区间; Ω_n 为第三类负荷中第n种在T个时段 中所定义的区间; Ω_z 为第四类负荷中第z种在T个 时段中所定义的区间。在本文中为了计算的简便,所 设定的区间都等于T个时段本身。

1.2 微电网管理方的下层优化模型

下层优化考虑微电网管理方的成本,在文献[9]

的基础上,本文供电源除了可控的分布式电源,还考 虑了与公共主网的联系和不可控分布式电源,优化模 型的目标函数是供电的总成本最小。针对不可控分布 式电源出力(如风力发电、太阳能发电等)具有随机性 的特征,参考文献[10]中对风电出力进行高估与低估 的惩罚,本文不可控分布式电源选择风力发电为代 表,其他类型的不可控分布式电源处理方式类似。

(1)目标函数。

下层优化模型的目标函数是系统供电的总成本 最小,其中f2由五部分构成:第一部分为柴油机组发 电成本;第二部分为从外部公共主网购买用电的成本; 第三部分为从风电机组购买电能的直接成本;第四部 分为当对风电的决策出力大于风电实际出力时,此时 须从别的地方(如太阳能、沼气等)购买或关闭某些负 荷的成本(高估);第五部分为当对风电决策出力小于 风电实际出力时,对未充分利用风能的惩罚(低估)。

$$\min f_2(\mathbf{y}) = \left\{ \sum_{i=1}^T \left[\sum_{i \in I} C_i P_{i,i}^{\mathrm{g}} + C_{\mathrm{p}} P_{\mathrm{out},i} + \sum_{m \in M_1} (a_m P_{m,i}^{\mathrm{w}} + C_{\mathrm{p}} P_{\mathrm{out},i} + \sum_{m \in M_1} (a_m P_{m,i}^{\mathrm{w}} + C_{\mathrm{p}} P_{\mathrm{out},i} + C_{\mathrm{p}} P_{\mathrm{out},$$

$$b_{m}\max\{0, P_{m,t}^{w} - P_{m,t}^{w1}\} + c_{m}\max\{0, P_{m,t}^{w1} - P_{m,t}^{w}\}\} \}$$
(14)

 $\mathbf{y} = (P_{i,t}^{g}, P_{out,t}, P_{m,t}^{w})$

其中, f_2 为微电网的供电成本;y为下层的决策变量; C_i 为柴油发电机组i的单位发电成本; $P_{i,t}^s$ 为柴油发 电机组i在t时段的出力;I为柴油机组集合; C_p 为从 公共主网购买用电的单位价格; $P_{out,t}$ 为在t时段时从 公共主网购买的功率; M_1 为风电机组集合; $P_{m,t}^w$ 为风 电机组m在t时段的决策出力; a_m 为从风电机组m直接购买电能的单位成本; $P_{m,t}^{wl}$ 为风电机组m在t时 段的实际出力,为随机变量; b_m 为风电机组m决策出 力大于风电实际出力的惩罚系数(高估),为正值; c_m 为对风电机组m的实际出力未充分利用的惩罚系数 (低估),为正值。

(2)约束条件。

下层优化的约束条件主要考虑系统的供需平衡、 柴油机组的出力范围、风电机组的出力范围、联络线 的出力范围及联络线在相邻2个时段的波动范围。

①功率平衡:

$$\sum_{i \in I} P_{i,t}^{g} + \sum_{m \in M_{1}} P_{m,t}^{w} + P_{\text{out},t} = \sum_{j \in J} P_{j,t}^{1} + \sum_{z \in Z} P_{z,t}^{1} + \sum_{n \in N} P_{n,t}^{3} + \sum_{k \in K} P_{k,t}^{2} + P_{t}^{\text{BL}} \quad t = 1, 2, \cdots, T; u_{t} \quad (15)$$

②柴油机组的出力范围:

 $P_{i}^{g,\min} \leqslant P_{i,t}^{g} \leqslant P_{i}^{g,\max} \quad \forall i \in I; t=1,2,\cdots,T; (\underline{r}_{i,t}, \overline{r}_{i,t})$ (16) ③风电机组的出力范围:

0≤P^w_{m,t}≤P^{w,max}_m ∀m∈M₁;t=1,2,…,T;(θ_{m,t}, θ_{m,t})(17)
 ④联络线的出力范围:在本文中只考虑从公共
 主网购买电,不考虑卖电给公共主网,因此下限为
 0,上限由联络线本身所决定。

$$0 \leq P_{\text{out},t} \leq P_{\text{out}} \quad t=1,2,\cdots,T; (\underline{\lambda}_{t},\overline{\lambda}_{t})$$
(18)

⑤联络线功率波动约束:当从公共主网购买电 能的变化波动太大,可能引起公共主网负荷"峰上加 峰"的现象,这将给公共主网用电的安全性带来挑 战,为避免这种现象的发生,因此对相邻两时段购买 电能的波动变化加以约束。

$$\Delta P_{\text{down}} \leq P_{\text{out},t+1} - P_{\text{out},t}^{\text{g}} \leq \Delta P_{\text{up}} \quad t = 1, 2, \cdots, T-1; (\underline{\eta}_{t}, \overline{\eta}_{t})$$
(19)

其中: P^{BL} 为微电网在 t 时段的基准负荷值:u,为 t 时 段功率平衡等式的拉格朗日系数,为t时段的电价, 常常也称该系数为节点边际电价 LMPs(Locational Marginal Prices)^[11]:P^{ş,min} 为柴油机组 i 的最小出力 值; $P^{g, \max}$ 为为柴油机组 i 的最大出力值; r_i ,为在 t 时 段与柴油机组出力 i 下限相关不等式的拉格朗日系 数: \bar{r}_i ,为在t时段与柴油机组i出力上限相关不等 式的拉格朗日系数: Pw, max 为风电机组 m 的最大出力 值; θ_m ,为在t时段与风电机组m出力下限相关不等 式的拉格朗日系数; $\bar{\theta}_{m,t}$ 为在 t 时段与风电机组 m 出 力上限相关不等式的拉格朗日系数:Pmax 为联络线的 最大出力值: λ ,为在 t 时段与联络线出力下限相关 不等式的拉格朗日系数: $\overline{\lambda}_{t}$ 为在 t 时段与联络线出 力上限相关不等式的拉格朗日系数; η_i 为在 t 时段 与联络线功率波动的上限相关不等式的拉格朗日系 数;η_t为在t时段与联络线功率波动的下限相关不 等式的拉格朗日系数; ΔP_{down} 为联络线功率波动的 下限, $\Delta P_{\rm m}$ 为联络线功率波动的上限,本文假设 $\Delta P_{\rm m}$ 与 ΔP_{down} 之和等于0。

2 双层优化模型的计算

双层规划问题的计算是非常困难的, Jeroslow 指出双层线性规划是一个 NP (Non-deterministic Polynomil)问题^[12]。求解双层优化模型主要有极点算 法、分支定界算法、罚函数算法、KKT法、互补旋转算 法、非数值优化算法等几类算法^[13]。本文采用 KKT 法把这个双层优化问题转换成一个单层带平衡约束 的数学优化模型 MPEC (Mathematical Programs with Equilibrium Constraints)^[6],经过转换后的模型是一 个混合整数非线性规划问题。本文采用 KKT 条件转 换成单层优化的计算,转换后的模型如下。

目标函数:

$$C_i - \mu_i - \underline{r}_{i,t} + \overline{r}_{i,t} = 0 \quad \forall i \in I; t = 1, 2, \cdots, T$$

$$(23)$$

$$\begin{aligned} \frac{\partial L(\mathbf{x})}{\partial P_{m,t}^{w}} = a_{m} + b_{m} - c_{m} - \mu_{t} - \theta_{m,t} + \bar{\theta}_{m,t} = 0 \\ & \forall m \in M_{1}; t = 1, 2, \cdots, T \qquad (24) \\ \underline{r}_{i,t} \ge 0 \quad \forall i \in I; t = 1, 2, \cdots, T \qquad (25) \\ \bar{r}_{i,l} \ge 0 \quad \forall i \in I; t = 1, 2, \cdots, T \qquad (26) \\ \theta_{m,t} \ge 0 \quad \forall m \in M_{1}; t = 1, 2, \cdots, T \qquad (27) \\ \bar{\theta}_{m,t} \ge 0 \quad \forall m \in M_{1}; t = 1, 2, \cdots, T \qquad (27) \\ \bar{\theta}_{m,t} \ge 0 \quad \forall m \in M_{1}; t = 1, 2, \cdots, T \qquad (28) \\ \underline{\lambda}_{t} \ge 0 \quad t = 1, 2, \cdots, T \qquad (29) \\ \bar{\lambda}_{t} \ge 0 \quad t = 1, 2, \cdots, T \qquad (30) \\ \underline{\eta}_{i,t} \ge 0 \quad \forall i \in I; t = 1, 2, \cdots, T \qquad (31) \\ \bar{\eta}_{i,t} \ge 0 \quad \forall i \in I; t = 1, 2, \cdots, T \qquad (32) \\ \underline{r}_{i,t}(P_{i,t}^{g} - P_{i,t}^{g,\min}) = 0 \quad \forall i \in I; t = 1, 2, \cdots, T \qquad (34) \\ \theta_{m,t}(P_{m,t}^{w,\max} - P_{m,t}^{w}) = 0 \quad \forall m \in M_{1}; t = 1, 2, \cdots, T \qquad (35) \\ \bar{\theta}_{m,t}(P_{m,t}^{w,\max} - P_{m,t}^{w}) = 0 \quad \forall m \in M_{1}; t = 1, 2, \cdots, T \qquad (36) \\ \underline{\lambda}_{t}P_{out,t} = 0 \quad t = 1, 2, \cdots, T \qquad (37) \\ \bar{\lambda}_{t}(P_{out,t}^{\max} - P_{m,t}^{w}) = 0 \quad t = 1, 2, \cdots, T \qquad (38) \end{aligned}$$

 $\underline{\eta}_{t}(P_{\text{out},t+1} - P_{\text{out},t} - \Delta P_{\text{down}}) = 0 \quad t = 1, 2, \cdots, T - 1$ (39)

 $\overline{\eta}_{t}(\Delta P_{up} + P_{out,t} - P_{out,t+1}) = 0 \quad t = 1, 2, \cdots, T - 1$ (40)

在上述约束式中,式(33)—(40)为非线性互补 松弛条件,现把非线性问题转换成线性问题,过程如 下:取足够大的正常数 M, w 为二元决策变量,对于 互补性等式 $\pi f=0$,其中 π 为拉格朗日系数,其值非 负,f 为一个受限制的连续函数($f \ge 0$),可以通过 M, w来对等式进行转化, $\pi \le Mw, f \le M(1-w)^{[14]}$ 。现将式 (33)—(40)转换成线性不等式,转换结果如下:

$$\begin{split} & r_{i,i} \leqslant M w_{i,i}^{r} \quad \forall i \in I; t = 1, 2, \cdots, T & (41) \\ & P_{i,i}^{r} - P_{i}^{g,\min} \leqslant M(1 - w_{i,i}^{r}) \quad \forall i \in I; t = 1, 2, \cdots, T & (42) \\ & \bar{r}_{i,i} \leqslant M w_{i,i}^{\bar{r}} \quad \forall i \in I; t = 1, 2, \cdots, T & (43) \\ & P_{i}^{g,\max} - P_{i,i}^{g} \leqslant M(1 - w_{i,i}^{\bar{r}}) \quad \forall i \in I; t = 1, 2, \cdots, T & (44) \\ & \underline{\theta}_{m,i} \leqslant M w_{m,i}^{\theta} \quad \forall m \in M_{1}; t = 1, 2, \cdots, T & (45) \\ & P_{m,i}^{w} \leqslant M(1 - w_{m,i}^{\theta}) \quad \forall m \in M_{1}; t = 1, 2, \cdots, T & (46) \\ & \bar{\theta}_{m,i} \leqslant M w_{m,i}^{\bar{\theta}} \quad \forall m \in M_{1}; t = 1, 2, \cdots, T & (47) \\ & P_{w,\max} - P_{w,i}^{w} \leqslant M(1 - w_{m,i}^{\bar{\theta}}) \quad \forall m \in M_{1}; t = 1, 2, \cdots, T & (48) \\ & \underline{\lambda}_{i} \leqslant M w_{i}^{\lambda} \quad t = 1, 2, \cdots, T & (49) \\ & P_{out,i} \leqslant M(1 - w_{i}^{\lambda}) \quad t = 1, 2, \cdots, T & (51) \\ & P_{out,i} \leqslant M(1 - w_{i}^{\lambda}) \quad t = 1, 2, \cdots, T & (51) \\ & P_{out,i} \leqslant M w_{i,i}^{\bar{\eta}} \quad t = 1, 2, \cdots, T & (51) \\ & P_{out,i+1} - P_{out,i} \leqslant M(1 - w_{i}^{\lambda}) \quad t = 1, 2, \cdots, T & (52) \\ & \eta_{i} \leqslant M w_{i,i}^{\eta} \quad t = 1, 2, \cdots, T - 1 & (53) \\ & P_{out,i+1} + \Delta P_{up} - P_{out,i} \leqslant M(1 - w_{i}^{\eta}) \quad t = 1, 2, \cdots, T - 1 & (55) \\ & w_{i,i}^{r} + w_{i,i}^{\bar{\eta}} \leqslant 1 \quad \forall i \in I; t = 1, 2, \cdots, T & (57) \\ & w_{m,i}^{h} + w_{m,i}^{\bar{\theta}} \leqslant 1 \quad \forall m \in M_{1}; t = 1, 2, \cdots, T & (58) \\ & w_{i}^{\lambda} + w_{i}^{\bar{\eta}} \leqslant 1 \quad t = 1, 2, \cdots, T & (59) \\ & w_{i}^{\eta} + w_{i}^{\bar{\eta}} \leqslant 1 \quad t = 1, 2, \cdots, T - 1 & (56) \\ & w_{i,i}^{\eta} + w_{i,i}^{\bar{\eta}} \leqslant 1 \quad t = 1, 2, \cdots, T & (59) \\ & w_{i}^{\eta} + w_{i,i}^{\bar{\eta}} \leqslant 1 \quad t = 1, 2, \cdots, T - 1 & (56) \\ & w_{i}^{\eta} + w_{i,i}^{\bar{\eta}} \leqslant 1 \quad t = 1, 2, \cdots, T & (59) \\ & w_{i}^{\eta} + w_{i,i}^{\eta} \leqslant 1 \quad t = 1, 2, \cdots, T - 1 & (56) \\ & w_{i,i}^{\eta} + w_{i,i}^{\bar{\eta}} \leqslant 1 \quad t = 1, 2, \cdots, T & (59) \\ & w_{i}^{\eta} + w_{i,i}^{\eta} \leqslant 1 \quad t = 1, 2, \cdots, T - 1 & (50) \\ & w_{i}^{\eta} + w_{i,i}^{\eta} \leqslant 1 \quad t = 1, 2, \cdots, T & (59) \\ & w_{i}^{\eta} + w_{i,i}^{\eta} \leqslant 1 \quad t = 1, 2, \cdots, T - 1 & (50) \\ & w_{i}^{\eta} + w_{i,i}^{\eta} \leqslant 1 \quad t = 1, 2, \cdots, T - 1 & (50) \\ & w_{i}^{\eta} + w_{i,i}^{\eta} \leqslant 1 \quad t = 1, 2, \cdots, T - 1 & (50) \\ & w_{i}^{\eta} + w_{i,i}^{\eta} \leqslant 1 \quad t = 1, 2, \cdots, T & (50) \\ & w_{i}^{\eta} + w_{i,i}^{\eta} \leqslant 1 \quad t = 1, 2, \cdots, T & (50) \\ & w_{i}^{\eta} + w_{i,i}^{\eta} \leqslant 1 \quad t =$$

$$w_{i,t}^{r}, w_{\bar{i},t}^{\bar{n}}, w_{\bar{m},t}^{\theta}, w_{\bar{m},t}^{\theta}, w_{t}^{\bar{\lambda}}, w_{t}^{\bar{\lambda}} \in [0, 1]$$

$$\forall i \in I; \forall m \in M_{1}; t = 1, 2, \cdots, T$$
(61)

$$w_{\iota}^{\eta}, w_{\iota}^{\overline{\eta}} \in [0, 1] \quad t = 1, 2, \cdots, T - 1 \tag{62}$$

$$M = +\inf$$
(63)

其中,w_i,为含r_i,的非线性等式(式(33))转换为线 性不等式的二元决策变量,其他类似变量含义相似。

经过上述转换后,这个单层优化模型的约束全 部化为线性,方便了求解,转换后的优化模型如下:

$$\begin{split} \min f_1(\boldsymbol{x}, \boldsymbol{y}) &= \sum_{t=1}^{l} \mu_t \Big(\sum_{j \in J} x_{j,t}^1 P_j^1 + \sum_{k \in K} x_{k,t}^2 P_k^2 + \sum_{n \in N} P_{n,t}^3 + \sum_{z \in Z} P_{z,t}^d \Big) \\ \boldsymbol{x} &= (x_{j,t}^1, x_{k,t}^2, P_{n,t}^3, x_{1,z,t}^d, x_{2,z,t}^d, x_{1,z,t}^c, x_{2,z,t}^c) \\ \boldsymbol{y} &= (P_{t,t}^g, P_{\text{out},t}, P_{m,t}^w) \\ \text{s.t.} \quad \vec{\pi}(2) - (13), \vec{\pi}(15) - (32), \vec{\pi}(41) - (60) \end{split}$$

3 数值实验及结果分析

3.1 测试系统及模型参数

本文的测试系统为一个社区微电网,该社区包括居民区和工业区,假设在居民区和工业区都有能与电动汽车进行充放电的装置。该社区日负荷有强的周期性,除节假日外,工作时间(周一到周五)09:00—17:00,该时段大部分人都在工业区上班,此时电动汽车与工业区充放电装置相连,还有少部分人在居民区活动,本文研究的是这个时段。现为了叙述的方便,把09:00—17:00分为8个时段,每个时段的间隔为1h,分别以1、2、…、8表示这8个时段。

本文采用文献[9]的系统数据为基础,但对系统 参数做了一定的修改。本文的供电源由 3 台柴油机 组、1 组风电机组与公共电网联络线组成。3 台柴油 机组的 $P_i^{\text{g.min}}$ 分别为 5、5、5 MW, $P_i^{\text{g.max}}$ 分别为 20、25、 30 MW, C_i 分别为 20、25、30 \$/(MW·h)。公共主 网^[15]的 $P_{\text{out}}^{\text{max}}$ 为 40 MW,电价 C_p 为 28 \$/(MW·h),联 络线的 ΔP_{down} 和 ΔP_{up} 分别为 -20、20 MW。基准负荷 P_i^{BL} 在 8 个时段分别为 110、111、90、95、80、90、100、 75 MW。本文没有单独考虑系统的网损,如果需要考 虑,可以在各个时段的基准负荷中加上网损值。

文中所提的风电机组是由 12 台额定功率为 2 MW 的风力发电机组成,每台风电机组的切入风速

 v_{ix} 额定风速 v_{N} 和切出风速 v_{o} 分别为4x12.5x20 m/s, 风电机组的 $P^{w,max}$ 为 24 MW, a_{m} 为 12 \$/(MW · h), b_{m} 为 6 \$/(MW · h), c_{m} 为 6 \$/(MW · h),假设风速服从 Weibull^[16],Weibull 分布的形状参数和尺度参数分 別取 4 x21,随后用 MATLAB 编写风速的样本平均 程序,求得在这 8 个时段的风电机组的 $P_{m,t}^{wil}$ (风电机 组实际出力)分别为 12 x13 x10 x8 y8 x10 x12 MW。

有了测试系统的基本参数,现对上层四大类可控 负荷的一些参数进行设定,在本文中,4 类可控负荷 每类中只取了一种最简单的情况作为代表。第一类 负荷的 P_i^1 为4MW, H_i^1 为3h;第二类负荷 P_k^2 为3MW, a_k^2 和 b_k^2 分别取1、2;第三类负荷 $P_{n,max}^3$ 为2.5MW, E_{min}^{min} 和 E_{max}^{nx} 分别取8、10MW·h;第四类负荷 $E_{z,min}$ 和 $E_{z,max}$ 分别为4、20MW·h, $e_z(T)$ 取15MW·h, $e_z(0)$ 为 10MW·h, $P_{1,z}^d$ 、 $P_{2,z}^d$ 、 $P_{2,z}^c$ 分别取值为-2、-4、 2、4MW。其他计算条件:LINGO11.0 建模工具箱,求 解器选择Global solver;硬件条件为英特尔1.8GHz CPU,1G内存;MATLAB2013版软件。

3.2 仿真结果及分析

通过本文介绍的两层优化模型计算得到上层目 标函数值为 \$881.5,下层目标函数值为 \$18074。第 一、二、四类可控负荷开关变量的状态见表 1,负荷 消耗的功率、供电源的出力和电价见表 2。

基于上述计算结果,下面进一步分析参数变化 对计算结果的影响,并用上述计算结果与单层优化 模型进行对比。

(1)联络线波动变化值对用户和管理方的影响。

表 1 可控负荷的开关变量

Table 1 Binary variables of controllable loads

	开关变量						
t	第一类	第二类	快放	平放	平充	快充	
	负荷	负荷	负荷	负荷	负荷	负荷	
1	0	0	0	1	0	0	
2	0	1	0	1	0	0	
3	0	0	0	0	1	0	
4	0	1	1	1	0	0	
5	1	0	0	0	1	0	
6	1	1	0	0	1	0	
7	0	0	0	0	0	1	
8	1	1	0	0	0	1	

表 2	各时间段可控负	荷消耗的功	率、机组出力]和电价情况
	Table 2 Ontimize	tion results	for different	neriode

Table 2 optimization results for anotonic portous										
	1	负荷消耗功率/MW			机组出力/MW			联络线	电价/	
t	第一类	第二类	第三类	第四类	柴油机组1	柴油机组2	柴油机组3	风机	功率/MW	$[\$ \cdot (MW \cdot h)^{-1}]$
1	0	0	0.4	-2	20.0	25.0	30.0	24	8.5	35
2	0	3	0	-2	20.0	25.0	30.0	24	13.0	34
3	0	0	0	2	20.0	25.0	6.4	24	17.5	30
4	0	3	0.2	-4	20.0	25.0	5.0	24	22.0	30
5	4	0	2.5	2	20.0	15.7	5.0	24	26.5	25
6	4	3	2.4	2	20.0	25.0	5.0	24	31.0	25
7	0	0	0	4	20.0	24.0	5.0	24	35.5	25
8	4	3	2.5	4	19.9	5.0	5.0	24	40.0	20

把 ΔP_{down} 和 ΔP_{up} 的值分别改为-10、10 MW, 计 算得到各个时段的电价分别为 33、33、30、30、25、 25、28、20 \$/(MW·h), 上层目标函数值为\$898.4, 下 层目标函数值为\$18073.08, 供电源的出力见图 1。

把 ΔP_{down} 和 ΔP_{up} 的值分别改为-5、5 MW, 计算 得到各个时段的电价分别为 33、33、30、30、25、25、 28、20 \$/(MW·h), 上层目标函数值为 \$900.5, 下层 目标函数值为\$18075.17, 供电源的出力见图 2。

图 2 联络线波动变化值为 5 MW 的机组出力 Fig.2 Generator outputs when ΔP_{up} is 5 MW

从数值计算结果可发现,减少联络线的波动变化 值,表示联络线变化波动的范围减少,为应对负荷的 波动变化,此时未考虑机组爬坡约束、单位成本高的 机组将扮演更重要的角色,造成优化模型的上层目标 函数值变大。但当 ΔP_{up} 的值小到一定程度时,优化 模型的上下层目标函数值变化幅度明显减少,这是由 于随着 ΔP_{up} 变得越来越小,联络线对负荷变化的敏 感度基本相同,此时可认为应对负荷的波动变化基本 由其他未充分出力的机组来进行,因此上下层目标 函数值幅值变化不大。随着 ΔP_{up} 的值发生变化,将 会引起总的可控负荷在各时段分布变化,见图 3。

(2)风电高估系数对用户和管理方的影响。

把 b_m的值改为 14,计算得到各个时段的电价 分别为 30、30、26、30、26、30、26 \$/(MW·h),上 层目标函数值为\$980,下层目标函数值为\$18838。把 b_m的值改为 17,计算得到各个时段的电价分别为 30、30、26、30、26、26、30、26 \$/(MW·h),上层目标

函数值为\$988,下层目标函数值为\$18854.28。

从数值计算结果可发现,增大风电机组的高估 系数,此时风电的直接成本加上高估系数升高,即增 大了风电的购电成本,引起优化模型的上下层函数 值变大,且当高估系数大于一定数值时,风电机组的 决策出力发生了变化,见图 4。这是由于系统供电侧 是按照单位成本低的供电源优先供给的顺序,当风 电的直接成本加上高估系数之和达到一定的值时, 此时在满足系统供需平衡的前提下,将主要考虑由单 位成本低的柴油机组或公共主网供电,因此将减少 风电机组的功率出力。还可发现随着 b_m值的变化, 将会引起各时段总的可控负荷的分布变化,见图 5。

(3)风电低估系数对用户和管理方的影响。

把 c_m的值改为 10,计算得到各个时段的电价分 别为 35、34、30、30、25、25、25、20 \$/(MW·h),上层 目标函数值为\$884.7,下层目标函数值为\$18081.36。 把 c_m的值改为 14,计算得到各个时段的电价分别为 34、34、30、30、25、25、26、20 \$/(MW·h),上层目标 函数值为\$890.5,下层目标函数值为\$18082.17。

从数值计算结果可以发现,增大风电机组的低 估系数,即增大了对风力发电低估的惩罚力度,此时 风电机组的决策出力都大于风电机组的实际出力 值,见图 6。本文由于风电机组的直接成本加上高估 系数之和较小,导致风电机组的决策出力等于风电 机组出力的最大值。还可以发现随着 cm 值的变化, 将会引起各个时段总的可控负荷的分布变化,见图 7。

图 6 风电机组低估系数对风电机组出力的影响

Fig.6 Influence of $c_{\rm m}$ on wind power output

(4)基准负荷变化对用户和管理方的影响。

把基准负荷 P^{IL} 在 8 个时段分别改为 100、111、 75、90、80、95、110、90 MW, 计算得各时段电价分别 为 30、35、25、30、25、25、29、25 \$/(MW·h), 上层目标 函数值为\$930.5, 下层目标函数值为\$17727.25。

从数值计算结果可以发现,当改变基准负荷时, 优化模型的上下层目标函数值、机组出力(见图 8)、

可控负荷的运行状态(见图 9)和电价都发生了变化, 但系统供电侧仍是按照单位成本低的机组优先供给 的顺序。由于风电机组的直接购电成本加上高估系 数较小,所以风电机组的决策出力仍是等于风电机组 的最大出力值。还可以发现随着的基准负荷值变化, 将会引起总的可控负荷在各个时段分布变化。

(5)双层优化模型与单层优化模型比较。

现本文对可控负荷指定一种运行方式,这使本 文的优化问题成为一个单层的优化模型,目标函数 是供电成本最少,决策变量是各供电源的出力。第 一、二、四类开关变量状态见表 3,指定可控负荷运 行消耗的功率见表 4,计算得到的电价分别为 30、 30、30、25、25、30、29、24 \$/(MW·h),通过计算得到上 层目标函数值为\$1021,下层目标函数值为\$17989, 各供电源出力情况见图 10。

观察表 2,双层优化模型计算得到的这 8 个时段 电价分别为 35、34、30、30、25、25、25、20 \$/(MW·h),

表 3 可控负荷的开关变量 Table 3 Binary variables of controllable loads

	Tuble 5	Dinary var	labics of	control	able loa	us		
	开关变量							
t	第一类	第二类	快放	平放	平充	快充		
	负荷	负荷	负荷	负荷	负荷	负荷		
1	0	1	0	1	0	0		
2	0	0	1	0	0	0		
3	0	1	0	0	0	1		
4	0	0	0	0	0	0		
5	1	1	0	0	0	1		
6	1	0	0	0	0	1		
7	0	1	1	0	0	0		
8	1	0	0	0	0	1		

表 4 负荷消耗的功率

Table 4 Power consumption of controllable loads

	负荷消耗功率/MW						
ľ	第一类	第二类	第三类	第四类			
1	0	0	0	-2			
2	0	3	0	-4			
3	0	0	1.5	4			
4	0	3	0	-4			
5	4	0	2.5	0			
6	4	3	1.5	4			
7	0	0	0	4			
8	4	3	2.5	4			

Fig.10 Generator output when one controllable load type is specified

用户侧可控负荷总成本为\$881.5,下层目标函数值为 \$18074。通过比较可发现,在满足相同的约束和计 算基本参数一致的条件下,通过双层优化模型计算得 到的上层目标函数值比单层优化模型计算得到的上 层目标函数值降低了 15.83%,下层目标函数值上升 了 0.47%,下层目标函数值的差别基本可忽略不计, 可见本文所提模型具有明显的经济性。由于本文的 风电机组的直接成本加上高估系数之和较小,导致风 电机组的决策出力等于风电机组出力的最大值,与 双层优化模型计算得到的风电出力情况相同。

4 结论

本文将可控负荷引入到含风电场的微电网经济 调度中,通过用电激励和对用户侧可控负荷进行控 制,优化了用户侧可控负荷的成本,增强了系统消纳 风电的能力。将所考虑的可控负荷按照其特性和运 行特征分成了具有代表性的四大类,并用数学表达 式对其特性进行了描述。以双层规划理论为基础,将 微电网的用户侧和供电侧结合起来,建立以用户总 成本最低为总目标计及供电成本最优的两层优化模 型。采用双层优化转换成单层优化的方法,实现了双 层优化模型的计算。随后调用 LINGO 工具箱进行数 值运算,以某个社区微电网为测试系统说明了本文 所提模型的有效性。

算例结果表明,采用用电激励可减少用户成本, 能尽可能消纳风电,这与现阶段国家大力提倡节能 减排政策相符合,但联络线变化波动值的大小、风电 机组的惩罚系数和基准负荷的变化都对两层优化模 型上下层目标函数值有一定的影响,这些参数需根 据实际系统情况进行取值。尽管本文模型具有明显 的有效性,但各类可控负荷模型的精确刻画和实时 电价的大力推广等问题都还需要进一步研究解决。

参考文献:

[1] 李鹏,张玲,王伟,等. 微电网技术的应用与分析[J]. 电力系统自动化,2009,33(20):109-115.

LI Peng,ZHANG Ling,WANG Wei,et al. Application and analysis of microgrid[J]. Automation of Electric Power Systems,2009,33 (20):109-115.

- [2] 江岳春,王志刚,杨春月,等. 微电网中可控负荷的多目标优化策略[J]. 电网技术,2013,37(10):2875-2880.
 JIANG Yuechun,WANG Zhigang,YANG Chunyue,et al. Multiobjective optimization strategy of controllable load in microgrid
 [J]. Power System Technology,2013,37(10):2875-2880.
- [3] TSUI K M, CHAN S C. Demand response optimization for smart home scheduling under real-time pricing[J]. IEEE Transactions on Smart Grid, 2012, 3(4):1812-1821.
- [4] DU P,LU N. Appliance commitment for household load scheduling[J]. IEEE Transactions on Smart Grid, 2011, 2(2):411-419.
- [5] MOHSENIAN-RAD A H,LEON-GARCIA A. Optimal residential load control with price prediction in real-time electricity pricing environments[J]. IEEE Transactions on Smart Grid,2010,1(2): 120-133.
- [6] ARROYO J M,GALIANA F D. On the solution of the bilevel programming formulation of the terrorist threat problem [J]. IEEE Transactions on Power Systems, 2005, 20(2):789-797.
- [7] 马豫超,侯志俭,蒋传文,等. 基于粒子群算法求解电力市场发电 商最优供给函数模型[J]. 电力系统自动化,2006,30(2):45-50.
 MA Yuchao,HOU Zhijian,JIANG Chuanwen,et al. PSO algorithm based optimal supply function model for power producer[J].
 Automation of Electric Power Systems,2006,30(2):45-50.
- [8] 郑静,文福栓,李力,等. 计及能源电厂优化配置的输电系统两层规划[J]. 电力自动化设备,2013,33(6):13-20.
 ZHENG Jing,WEN Fushuan,LI Li,et al. Two-level planning of transmission system with optimal placement of efficiency power plants [J]. Electric Power Automation Equipment,2013,33(6): 13-20.
- [9] SIMON K K N,ZHONG J. Security-constrained dispatch with controllable loads for integrating stochastic wind energy [C] // 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe),2012. Berlin,Germany:IEEE,2012:1-8.
- [10] JOHN H, DAVID C Y, KALU B. An economic dispatch model incorporating wind power [J]. IEEE Transactions on Energy Conversion, 2008, 23(2):603-611.
- [11] ORFANOGIANNI T,GROSS G. A general formulation for LMP evaluation [J]. IEEE Transactions on Power Systems, 2007, 22 (3):1163-1173.
- [12] JEROSLOW R. The polynomial hierarchy and a simple model for competitive analysis[J]. Mathematical Programming,1985,32: 146-164.
- [13] 黄昌泽,刘明波,郝庆菀.不确定性无功优化问题的双层规划解法[J]. 陕西电力,2008,36(12):5-9.
 HUANG Changze,LIU Mingbo,HAO Qingyuan. Bi-level programming solution considering uncertain factors for reactive power optimization[J]. Shaanxi Electric power,2008,36(12):5-9.
- [14] FORTUNY-AMAT J,MCCARL B. A representation and economic interpretation of a two-level programming problem[J]. Oper Res Soc, 1981, 32:783-792.
- [15] 丁伟,袁家海,胡兆光. 基于用户价格响应和满意度的峰谷分时 电价决策模型[J]. 电力系统自动化,2005,29(20):10-14.

DING Wei, YUAN Jiahai, HU Zhaoguang. Time-of-use price (下转第 36页 continued on page 36) [26] 钱科军,袁越,石晓丹,等. 分布式发电的环境效益分析[J]. 中国电机工程学报,2008,28(29):11-15.

QIAN Kejun, YUAN Yue, SHI Xiaodan, et al. Environmental benefits analysis of distributed generation [J]. Proceedings of the CSEE, 2008, 28(29):11-15.

- [27] Diesel Service & Supply. Approximate diesel fuel consumption chart[EB/OL]. [2013-04-20]. http://www.dieselserviceandsupply. com/Diesel_Fuel_Consumption.aspx.
- [28] 李登峰,谢开贵,胡博,等. 基于净效益最大化的微电网电源优 化配置[J]. 电力系统保护与控制,2013,41(20):20-26.

LI Dengfeng,XIE Kaigui,HU Bo,et al. Optimal configuration of microgrid power supply based on maximizing net benefits [J]. Power System Protection and Control,2013,41(20):20-26.

作者简介:

刘春阳(1989—), 男, 山东威海人, 硕 士研究生, 主要研究方向为电力系统运行和 规划(**E-mail**:790868608@qq.com);

王秀丽(1961 —), 女,山西河曲人,教授,博士研究生导师,博士,主要研究方向为 电力系统规划和电力市场(E-mail:xiuliw@ mail.xjtu.edu.cn);

八个旧

刘世民(1973—),男,河北枣强人,高 级工程师,硕士,主要研究方向为电力系统及其自动化、微电 网控制系统(**E-mail**:shiminliua@163.com)。

Economic dispatch model considering battery lifetime for microgrid

LIU Chunyang¹, WANG Xiuli¹, LIU Shimin², ZHU Zhenpeng², WU Xiong¹, DUAN Jie¹, HOU Fei¹, XIE Linhong¹

(1. School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China;

2. BBHT-Beijing Beibian Microgrid Technology Company, Beijing 100093, China)

Abstract: Because of the uncertainty of renewable energy generation and load, the battery is applied as the energy storage device to ensure the safe and reliable operation of microgrid. An economic dispatch model considering the lifetime of battery is built to take its full advantage for improving the economy of microgrid and the mixed integer linear programming algorithm is adopted to solve the model. As an example, the economic dispatch optimization is carried out for a grid-connected microgrid with wind turbine, photovoltaic cell, battery, micro gas turbine, diesel engine and fuel cell to verify the effectiveness of the proposed model. **Key words**: microgrid; battery lifetime; economic dispatch; mixed integer linear program; models

(上接第 28 页 continued from page 28)

decision model considering users reaction and satisfaction index[J]. Automation of Electric Power Systems,2005,29(20): 10-14.

[16] 丁明,吴伟,吴红斌,等. 风速概率分布参数预测及应用[J]. 电 网技术,2008,32(14):10-14.

DING Ming, WU Wei, WU Hongbin, et al. Research on forecasting of probabilistic distribution parameters of wind speed and its application [J]. Power System Technology, 2008, 32(14):10-14.

作者简介:

童小娇(1962—),女,湖北武汉人, 教授,博士研究生导师,研究方向为最优 化理论与计算方法、电力市场、电力系统分 析等:

尹 昆(1990—),男,湖南衛阳人,硕士 研究生,研究方向为电力系统运行与控制、 电力市场(E-mail:709046464@qq.com)。

Economic dispatch for microgrid with controllable loads

TONG Xiaojiao^{1,2}, YIN Kun¹, LIU Yajuan¹, ZHOU Peng¹

(1. College of Electrical and Information Engineering, Changsha University of Science and Technolgy,

Changsha 410004, China; 2. Hunan First Normal University, Changsha 410205, China)

Abstract: Aiming at the influence of large-scale grid-connected wind power on the power system, the energy management strategy based on the demand-side response is applied to build a bi-level optimal dispatch model. In the upper/user level, the controllable load at user side is classified into four types according to its characteristics and operating performance and the minimum total electricity-purchase cost of four controllable load types is taken as the objective function. In the lower/management level, the minimum total power-supply cost in the condition of satisfied power-supply reliability is taken as the objective function. The KKT (Karush-Kuhn-Tucker) condition is adopted to transform the bi-level optimization model into a mono-level one. The effectiveness of the proposed model and algorithm is verified by the results of a numerical experiment for a microgrid.

Key words: controllable loads; optimization; microgrid; wind power; economic dispatch

36