基于改进层次分析法的交、直流微电网综合评估

刘自发1.韦 涛2.李梦渔1.曹志勇1.李韦姝1.惠 慧2

(1. 华北电力大学 电气与电子工程学院,北京 102206;

2. 中国电力科学研究院,北京 100192)

摘要:根据交、直流微电网的特点,基于供电可靠性、技术经济性以及适应性3个准则,建立了交、直流微电网综合评估指标体系,并提出各个评价指标的计算模型和量化方法。同时采用5/5-9/1标度层次分析法确定 各评价指标的权重,使得确定后的权重更加合理且具有更好的一致性。对交、直流微电网的算例评估结果验证 了所提指标体系的合理性以及评估方法的有效性。

关键词:微电网;评估;改进层次分析法;适应性;可靠性

中图分类号: TM 61 文献标识码: A

0 引言

微电网可在中低压范围内实现分布式发电技术 的高效、灵活应用^[1]。现阶段,微电网供电模式以交 流形式为主^[2]。在交流微电网中,各种微源和储能系 统一般通过电力电子变换器接入系统。其中,光伏 电池(PV)、储能系统(ESS)等直流微源通过逆变器 接入微电网母线,微型燃气轮机(MT)、风力发电机 (WT)等微源通过变换器接入电网^[3]。随着近年来电 子设备的大量应用,家用电器、商业楼宇、数据中心 等直流负荷迅猛增加,在分布式电源和负荷的推动 下,直接以直流传输线路连接分布式电源和储能装 置的直流微电网逐渐成为微电网研究的新方向^[4-5]。

交、直流微电网在组网方式、微源与微电网的接 口以及运行控制方式上的不同,导致其在供电可靠 性、经济性等性能上存在差距。如何对交流微电网 和直流微电网方案进行全面有效的评估,帮助决策 者做出最优决策,成为一个亟需研究和解决的问题。 目前,针对交、直流微电网评价方面,已有的文献主 要集中在可靠性或经济性评价。文献[6-8]运用现 有配电系统的可靠性指标对微电网可靠性进行了评 估。文献[9-10]提出了微电网的综合效益评估模 型,从节能降损、延缓输配网投资等方面分析典型分 布式电源和微电网成本效益。文献[11-13]对交、直 流系统最大传输容量、损耗和效率等方面进行对比 分析,分析结果认为相对交流系统,直流双极系统 拥有更大的传输容量,且传输损耗率更低。

本文分别针对交流和直流这2种微电网形式, 提出微电网的适应性评价指标,并结合供电可靠性、 技术经济性,建立评价指标的层次结构体系,提出基 于改进层次分析法的交、直流微电网综合评估方法

收稿日期:2015-03-07;修回日期:2016-02-22

基金项目:国家电网公司科技项目

Project supported by the Science and Technology Project of SGCC

DOI: 10.16081/j.issn.1006-6047.2016.03.010

模型,最后通过典型算例分析对该综合评估方法进 行验证。

1 交、直流微电网综合评价指标体系

1.1 指标体系构建及原则

构建交、直流微电网综合评价指标体系需要遵 循系统、科学、客观和实用等原则。在建立指标体系 时,选取的指标既要尽可能全面地反映评价对象的 特性,又要考虑实际数据采集难度和计算量等问题。 此外,建立交、直微电网的综合评价指标体系还需要 结合微电网自身的特点,评价指标应同时反映方案属 性,且指标选取的计算量度和计算方法必须一致^[14]。

微电网的供电可靠性指标可以用来度量整个微 电网系统及设备按可接受标准及期望数量满足用户 电力及电能量需求的能力。技术经济效益评估从微 电网本身的角度出发评判微电网方案的经济效益, 是衡量微电网建设方案合理性的重要方面。此外, 全面的微电网系统评估应该考虑微电网系统对未来 负荷的适应程度。为此,本文提出了一类新的指标, 即微电网的适应性指标,其从微电网供电能力、负荷 点平均电压和负荷适应度3个方面反映交、直流微 电网系统负荷特性以及适应负荷发展的程度。

综上所述,从供电可靠性、技术经济性和适应性 3个准则出发构建的交、直流微电网综合评估指标 体系如图1所示。

1.2 单项指标及计算方法

1.2.1 供电可靠性指标

本文采用的供电可靠性指标除常用的系统平均 停电频率(SAIFI)指标、系统平均停电时间(SAIDI)指标、平均供电可用率(ASAI)指标外,还采用了平均孤 岛运行持续时间 AIOD(Average Islanding Operation Duration)和孤岛供电不足期望 EDNSI(Expected Demand Not Supplied when being Island)这 2 个指标。

图 1 交、直流微电网综合评估指标体系 Fig.1 Comprehensive evaluation index system of AC and DC microgrid

AIOD 是指由于交流主网或公共连接点故障时 微电网孤岛运行持续时间的平均值。由于分布式电 源和储能容量限制,孤岛持续时间越长,微电网越容 易出现电源不足的情况。AIOD 定义为:

$$t_{\text{AIOD}} = \frac{\sum_{i=1}^{N_*} t_i}{N_{\text{s}}} \tag{1}$$

其中,*t_i*为每次孤岛运行持续时间;N_s为孤岛运行 次数。

EDNSI 是指微电网孤岛运行时由于电源供电不 足需要削减负荷的平均值,用来反映微电网孤岛运 行状态下的供电可靠性,其定义为:

$$L_{\text{EDNSI}} = \frac{\sum_{i=1}^{N_{\text{s}}} L_i}{N_{\text{s}}} \tag{2}$$

其中,*L*_i为每次孤岛运行时削减负荷量。 1.2.2 技术经济性指标

a. 总费用年值 TAC(Total Annual Cost)。

针对各微电网方案,将投资和运行成本费用折 算成年费用进行比较。采用工程年费用概念,费用 年值计算方法为:

$$C_{\rm TAC} = C_{\rm P} + C_{\rm M} + C_{\rm B} \tag{3}$$

其中, $C_{\rm P}$ 为投资年值; $C_{\rm M}$ 为年运行维护费用(含燃料费用); $C_{\rm B}$ 为年电网购电费用。

投资年值为微电网方案初期总投资折算的年 值,计算方法为:

$$C_{\rm P} = P \frac{\eta_{\rm c} (1 + \eta_{\rm c})^{n_{\rm w}}}{(1 + \eta_{\rm c})^{n_{\rm w}} - 1}$$
(4)

其中,P为初期总投资费用; η_e 为折现率; n_w 为运行 年限。

b.单位电量供电成本 PSC(Power Supply Cost per unit)。

单位电量供电成本是指 TAC 与年售电量的比值,计算公式为:

$$C_{\rm PSC} = \frac{C_{\rm TAC}}{E_{\rm s}} \tag{5}$$

其中, E_s为年售电量总和。

c. 投资容量比 ICR(Investment Capacity Ratio)。

微电网投资容量比是系统总投资与负荷容量的 比值,反映系统单位容量的造价水平,计算公式如式 (6)所示。

$$r_{\rm ICR} = \frac{C_{\rm all}}{P_{\rm L}} \tag{6}$$

其中, Cal 为微电网系统的总投资; PL 为负荷容量。

d.供电能效 PSE(Power Supply Efficiency)。

微电网系统的电能损耗主要包括换流器损耗和 线路损耗2个方面。定义微电网供电能效指标如式 (7)所示。

$$\lambda_{\rm PSE} = \frac{P_{\rm L}}{P_{\rm in}} \tag{7}$$

其中,Pin为微电网中电源供给功率。

1.2.3 适应性指标

a. 供电能力 PSC(Power Supply Capacity)。

供电能力反映的是微电网系统在满足安全性和 可靠性要求时,线路可以送达的负载量和距离。在 电压降落约束条件下,交流线路供电能力计算公式为:

$$S_{\rm PSC}^{\rm AC} = Pl = \frac{U_{\rm N} \Delta U}{r_0 + x_0 \tan \varphi} \tag{8}$$

其中, φ 为线路功率因数角。

直流双极线路供电能力计算公式为:

$$S_{\rm PSC}^{\rm DC} = Pl = \frac{2U_{\rm N}\Delta U}{r_0} \tag{9}$$

其中, $P 和 l 分别为线路输送功率和线路长度;<math>U_N$ 为 线路额定电压; $r_0 和 x_0 分别为线路单位长度电阻和$ 电抗。

b. 负荷点平均电压 LAV(Load Average Voltage)。

负荷点平均电压指每个负荷点电压平均值,计 算公式为:

$$U_{\text{LAV}} = \frac{\sum_{i=1}^{N} U_i}{N} \tag{10}$$

其中,*U_i*为微电网中各负荷点的电压值(标幺值);*N*为负荷点总数量。

c.负荷适应度 LFD (Load Fitness capability Degree)。

负荷适应度反映的是系统中更适合交流或直流 形式供电的负荷比例。根据用户能耗构成可以将用 户负荷分为3类:第一类为纯阻性负荷,可以直接在 交流和直流电源下工作;第二类为感应型旋转电机 类负荷,接入交流电源工作;第三类为电子类设备以 及变频电器,适用于直流供电。

对于交流系统,负荷适应度为:

$$D_{\rm LFR}^{\rm AC} = \frac{P_1 + P_2}{P_{\rm L}}$$
(11)

对直流系统,负荷适应度为: $D_{\text{LR}}^{\text{IC}} = \frac{P_2 + P_3}{2}$

$$\frac{DC}{LFR} = \frac{P_2 + P_3}{P_L}$$
(12)

其中,P₁、P₂和 P₃分别为系统中第一类、第二类、第三 类负荷的容量。

2 基于改进层次分析法的交、直流微电网综 合评估方法

2.1 5/5-9/1标度层次分析法

微电网方案评估的过程中,各指标的地位和作 用是不同的,且各个指标的重要性随着具体情况的 差异而不同。本文在分析交、直流微电网供电可靠 性、技术经济性和适应性的基础上,采用改进层次分 析法建立清晰的层次结构来分解复杂问题,能够有 效处理各项评估指标之间的内在联系及相互独立 性^[15]。改进层次分析法通过量化方案各项属性,逐 层建立判断矩阵,然后求解各层属性相对上层属性 的权重,最后计算方案的综合权重,完成对方案的综 合评估。

相对层次分析法存在的主观性较强、一致性不 足等问题,本文采用的改进层次分析法主要有以下 2点改进。

(1)用 5/5-9/1 标度法取代 1-9 标度法,提高 所求得的权重值的合理性。

根据 5/5-9/1 标度法的原理,其对于 1-9 标度 法的改进标度模型为:

$$S(k) = \frac{k}{10 - k} \tag{13}$$

设2个指标分别为 α_i 和 α_i 。

a. 当 *α_i* 相比 *α_j* 的重要性为相同、较强、强、很强、 绝对强时,*k* 分别取 5、6、7、8、9;*α_i* 相比 *α_j* 的重要程 度介于上述标度之间时,*k* 分别取 5.5、6.5、7.5、8.5。

b. 当 α_i 相比 α_i 的重要性为相同、较强、强、很强、绝对强时, *k* 分别取 5、4、3、2、1; α_i 相比 α_i 的重要程度介于上述标度之间时, *k* 分别取 4.5、3.5、2.5、1.5。

下面用1个算例来验证。

建立 1-9 标度矩阵 A 和 5/5-9/1 标度矩阵 B:

$$\boldsymbol{A} = \begin{bmatrix} 1 & 3 \\ 1/3 & 1 \end{bmatrix}, \quad \boldsymbol{B} = \begin{bmatrix} 1 & 6/4 \\ 4/6 & 1 \end{bmatrix}$$

求得矩阵A和B的权重分别为:

 $w_A = (0.75, 0.25), w_B = (0.6, 0.4)$

从得出的权重可以看出,显然 5/5-9/1 标度矩 阵得出的权重比 1-9 标度矩阵更符合判断矩阵所表 述的重要程度,因此可验证 5/5-9/1 标度矩阵得出 的权重相对更合理。

(2)提出适用于 5/5-9/1 比例标度不一致性矩阵的修正方法,改进 5/5-9/1标度矩阵的不一致性,具体如式(14)所示。

$$\Delta \sigma_{ij} = a_{ij} \frac{w'_j}{w'_i} \quad i, j = 1, 2, \cdots, n \tag{14}$$

其中, a_{ij} 为判断矩阵中元素, $\Delta \sigma_{ij}$ 为其扰动变量; w'_i 、 w'_i 分别为第 $i_{,j}$ 个指标权重。

根据式(14)计算矩阵中各元素的扰动变量,并 搜索出其中的最大扰动变量 $\Delta \sigma_{ijmax}$,通过以下方法修 正最大扰动变量对应的元素。

a. 假设最大干扰变量对应的元素为 a_{nm} ,标度为k/(10-k),则将 a_{nm} 修改为(k-0.5)/[10-(k-0.5)],并同时修改 a_{nm} 为[10-(k-0.5)]/(k-0.5);然后再校验新矩阵的一致性,如满足一致性要求则完成修正;如不满足一致性要求,不需要重新对新矩阵计算每对元素的干扰变量组,只需更改原矩阵中大小排在第2位的干扰变量组即可。依此类推直到满足一致性要求为止。

b. 当干扰变量对应的元素 *a*_{mn}=1/9,即此元素无 法按照 **a** 中的方法进行修改时,则保留此元素以及 对应元素 *a*_{mn} 的值,按照 **a** 中的方法修改大小排在 第 2 位的干扰变量所对应的元素组{*a*_{st},*a*_s},然后按 **a** 中方法进行修正即可。

例如矩阵A1为一个4×4的5/5-9/1标度矩阵:

$A_1 =$	1	5.5/4.5	7/3	8.5/1.5
	4.5/5.5	1	6/4	6/4
	3/7	4/6	1	6.5/3.5
	1.5/8.5	4/6	3.5/6.5	1

对矩阵 A₁ 进行一致性校验可得,其检验系数 CR=0.146,大于 0.1,不符合一致性校验要求,需要 对矩阵进行修正。按前述介绍的 5/5-9/1 标度矩阵 的修正方法进行修正后所得的矩阵为:

$$A_{1}' = \begin{bmatrix} 1 & 5.5/4.5 & 7/3 & 8.5/1.5 \\ 4.5/5.5 & 1 & 6/4 & 6.5/3.5 \\ 3/7 & 4/6 & 1 & 6.5/3.5 \\ 1.5/8.5 & 3.5/6.5 & 3.5/6.5 & 1 \end{bmatrix}$$

对矩阵 A'₁进行一致性校验可得,其检验系数 CR 为 0.092 3,小于 0.1,符合一致性校验要求,修正 成功。

2.2 基于 5/5-9/1 标度层次分析法的交、直流微电 网综合评估

运用改进层次分析法对交、直流微电网方案进

行综合评估,主要步骤如下。

a. 根据不同层次指标的相互关系确立综合评估 的层次模型。

b. 由单项指标计算方法对方案属性进行计算, 并对计算值进行无量纲化处理得到指标的评价值: 本文采用功效系数法[14]对评价指标作无量纲化处理. 计算方法为:

$$x_{ij}^{*} = c + \frac{x_{ij} - m_{j}'}{M_{j}' - m_{j}'} d$$
(15)

其中, x_{ii} , x_{ii}^* 分别为方案 *i* 指标 x_i 的计算值和评价值; M'_{x} , m'_{y} 分别为指标 x_{i} 的满意值和不容许值; $c_{x}d$ 均为 正常数,通常取 $c=60, d=40_{\circ}$

c. 对本层次各元素相对重要程度进行定量分 析,采用 5/5-9/1 标度法形成判断矩阵,得到更合理 的权重。

d. 根据所形成的 5/5-9/1 比例判断矩阵, 对其 进行一致性校验,如符合一致性校验标准则进行步 骤 e:如不符合一致性校验标准,则需要对判断矩阵 进行修正。

e. 完成一致性校验后,根据判断矩阵,计算最大 特征值 λ_{max} 及其对应特征向量 $W = [w_1, w_2, \cdots, w_n]$, 归一化得到该层各个评价指标关于上一层指标的相 对权重 $W' = [w'_1, w'_2, \cdots, w'_n]_o$

f. 利用各层单排序的结果,计算出指标层对目 标层的综合权重量 ω_i ,基于改进层次分析法的交直 流微电网综合评估结果 S 为:

$$S = \sum_{i=1}^{n} S_i \omega_i \tag{16}$$

其中,n为方案属性个数; S_i 为第i个指标的评价值;

0.4 kV AC QF_1 用户1 其他线路 (5.7 kW) 用户 2 ESS (57 kW) (30 kW) 用户3 ◄ OF MT (23 kW) < WT (10 kW) (4×2.5 kW) 用户 4 (5.7 kW) 用户5 < PV-(25 kW) $(3 \,\mathrm{kW})$ FC \Diamond $(10 \, \text{kW})^{\text{L}}$

 ω , 为第*i*个指标的权重。

笪例分析 3

本文对 Benchmark 低压微电网系统¹⁶进行分析. 该微电网通过公共连接点(PCC)与 10 kV 交流主网 相连,系统中负荷由风机、光伏、微型燃气轮机组和 燃料电池(FC)等多种分布式电源以及交流主网供电. 在系统孤岛运行以及负荷高峰时储能装置切入系统 承担部分负荷,维持微电网稳定运行。微电网中分 布式电源安装容量总计为 93 kW.储能安装容量为 30 kW,负荷容量为116.4 kW。本文在微源、储能和负 荷配置基础上,分别给出交、直流微电网方案见图2。

交流微电网方案:交流微电网通过变压器与交 流 10 kV 主网相连,系统中风电机组、微型燃气轮机 均以 AC-DC-AC 接口形式接入 0.4 kV 交流微电网, 光伏发电单元和燃料电池则通过逆变器并入微电 网,蓄电池储能通过双向 AC-DC 环节接入系统中, 系统中交流负荷直接或经过 AC-DC-AC 环节,直流负 荷经过整流环节接入微电网,如图 2(a)所示。

直流微电网方案:直流微电网采用直流双极形 式,通过电压型 PWM 整流器、整流变压器与交流主 网相连,系统中风电机组、微型燃气轮机机组通过电 压型 PWM 整流器并入微电网,光伏发电单元和燃 料电池单元则通过 DC-DC 变换器接入系统中,蓄电 池储能通过双向 DC-DC 并入微电网,系统中交流负 荷经电压型逆变器,直流负荷直接或经过 DC-DC 变 换接入微电网,如图 2(b)所示。

微电网系统风电装机容量为 10 kW,光伏装机

63

图 2 交流微电网与直流微电网结构图 Fig.2 Structure of AC microgrid and DC microgrid

容量为 13 kW,燃料电池容量为 10 kW,储能电池容量为 30 kW,系统最大负荷为 118 kW。本文采用序 贯蒙特卡洛法计算微电网可靠性指标。微电网中主 要设备的可靠性参数如表 1 所示。

表 1 主要元件的可靠性参数 Table 1 Reliability parameters of main components

元件	失效率/ (次・a ⁻¹)	修复 时间/h	元件	失效率/ (次・a ⁻¹)	修复 时间/h
PV	0.110	72	逆变器	0.167	18
WT	0.210	60	斩波器	0.272	18
FC	0.110	72	变压器	0.012	110
MT	0.160	16	交流断路器	0.080	18
ESS	0.220	60	直流断路器	0.300	30
PCC	2.880	1.34	线路	0.160	8
整流器	0.146	18	直流线路	0.160	8

微电网投资主要由一次设备和配套的二次设备投资构成。而系统的维护成本、燃料费用以及从 电网购电费用则与微电网中电源的出力及负荷率 有关。表2给出系统中分布式电源年最大利用小时 数*T*_{max}。

表 2 分布式电源及负荷的年最大 利用小时数

Table 2 Maximum annual utilization hours of DG and load

类型	$T_{\rm max}$ / h	类型	$T_{ m max}$ / h
MT	4865	FC	7716
WT	1672	负荷	4278
\mathbf{PV}	2245		

计算微电网供电能力时,采用 4 mm×120 mm 铝 导线,电压降落约束 ΔU 取 7% U_N ,由式(8)、(9)计 算可得交流微电网 S_{PSC}^{AC} =34.54 kW·km,直流微电网 S_{PSC}^{DC} =78.87 kW·km。

通过计算,在分布式电源额定最大功率及满负 荷运行状态下,交、直流微电网系统中各部分损耗如 表3所示。

表 3 交、直流微电网损耗 Table 3 Loss of AC/DC microgrid

御中國		损耗/kV	W	
诚电网	线路	分布式电源换流器	主网换流器	总计
交流微电网	0.971	8.984	1.728	11.683
直流微电网	0.370	6.105	3.850	10.325

根据表 3,由式(7)计算得交流微电网供电能效 为 90.88%,直流微电网供电能效为 91.85%。

根据电压损耗计算公式,得到的各用户点电压 值(标幺值)如表4所示。

根据微电网中纯阻性负荷、交流负荷及直流负荷比例可求出微电网系统的负荷适应度,交、直流微电网负荷适应度的计算结果分别为68.6%、47.4%。

运用本文提出的方法,对各层指标权重值进行

表 4	负荷点平	均电	.压值
Table 4	Average 1	oad	voltage

用户点	交流供电时电压	直流供电时电压
1	0.9997	0.9998
2	0.9951	0.9987
3	0.9946	0.9985
4	0.9943	0.9984
5	0.9938	0.9981
平均值	0.9955	0.9987

求解。以准则层各指标为例,分析准则层供电可靠 性、技术经济性和适应性3个指标的两两重要程度, 确定目标层对准则层的判断矩阵为:

	1	6/4	5.5/4.5
$G_1 =$	4/6	1	4.5/5.5
	4.5/5.5	5.5/4.5	1

检验系数 CR=0.000011<0.1,判断矩阵通过一 致性检验。计算目标层对准则层的层次权重为 ω_{GI} =[0.4025 0.2687 0.3288]。同理,利用该方法计 算准则层对指标层的层次权重,并最终得到指标层 对目标层的综合权向量为:

 $\boldsymbol{\omega} = [0.0676, 0.0676, 0.1586, 0.0588, 0.0499, 0.0499]$

0.0886, 0.0560, 0.0761, 0.0480, 0.0883,

0.1323,0.1081]

根据所计算出的指标层对目标层的综合权重, 利用式(16)计算得出的微电网方案属性决策表如表 5 所示。

表 5 数据为在目前的技术水平下,交、直流微 电网可靠性、经济性以及适应性的评分情况以及总 体评分情况。值得指出的是,微电网技术正在快速 发展时期,不仅需要评估目前的交、直流微电网,而 且要对未来交、直流微电网总体情况进行评估。

根据文献[17-19]的换流器、逆变器和斩波器的 可靠性参数基础数据,分析其趋势曲线来预测 2020 年和 2025 年的可靠性参数,结果如图 3 所示。同理 可得出元件经济性趋势曲线^[20]和负荷适应度趋势曲 线^[13]分别如图 4、图 5 所示。

根据前述的改进层次分析法权重计算方法 以及各个指标的计算模型,利用式(16)计算得出 2020年、2025年的微电网方案属性决策结果如表 6 所示。

以上计算结果表明:在当前的技术条件下,交流 微电网的可靠性要明显优于直流微电网,原因之一 在于换流器、逆变器和斩波器等直流微电网中常用 的电力电子设备故障率较高;原因之二是由于微电 网内各电源不能完全满足负荷需求,因此一旦公共 连接点出现故障,微电网孤岛运行时极有可能因电 源不足而损失部分负荷。在技术经济性方面,除了 供电能效指标外,目前交流微电网的其他指标也优 表 5 方案属性决策表

			Table	5 Attrib	ute dec	eision tabl	e of AC	/DC n	nicrogrid	scheme				
-	~ 며 브			化标目		方案指标	示计算值		方案指标评分值		方案准	则评分值	_	
	催则层		佰仦层		え	ご 流微电网	直流微电	网交	流微电网	直流微电网] 交流微电网	刃 直流微电网	X	
-		系统平均]停电次数	ጲ/(次・a ^{−1})	1.02	1.57		85.83	78.19				
		系统平均	匀停电时间	问/(h・a ⁻¹))	3.43	6.04		77.63	60.60				
	供电可靠	性 平均	平均供电可用率/%			99.961	99.931	l	77.71	60.57	81.05	69.81		
			AIOD/h	1		4.71	5.06		89.16	87.76				
			EDNSI/k	W		28.06	29.59		80.25	79.18				
-		总	费用年值	ī/元		297603	30812	6	84.09	81.28				
	十十万次	业 单位电量供	电成本/[元・(kW・	h)-1]	0.58764	0.6188	4	85.43	81.27	02.20	01 (1		
	仅不空价1	^住 投资名	₹量比/(テ	亡・kW ⁻¹)		14837	16001		89.60	88.23	83.20	81.61		
		1	共电能效/	/%		90.88	91.85		68.82	72.14				
-		供电	能力/(k)	W•km)		34.54	78.87		77.52	100.00				
	适应性	负	荷点平均	电压		0.9955	0.9987		96.40	98.96	88.38	92.66		
		负	荷适应度	Ē/%		68.6	47.4		87.44	78.96				
-					总评	分					84.04	80.50	_	
		斩油哭		(2	50 [斩波器			[≈] ⁷⁰ [直流负荷		
K .	逆变器	4/1 UX 111		Ŕ		_逆变器				2 25	交流负荷		\sim	
<_ 0.2 E				$- \underset{K}{\swarrow} 1$	25 -	换流器				чтээ Гариан		纯阻	性负荷	
堂 0	换流	器		— 救	0	DC DIG HH			T 2					
≊ 200:	5 2010) 2015 2	2020 2	2025 点	2005	2010	2015	2020	2025	2005	2010	2015 202	202	
r		Table 6	表 Attribut	6 2020 :	年和 20 m table)25 年交、 e_of_AC/	直流微电 DC mier	回网方 Sporid s	案属性决 cheme_fo	:策表 vr 2020 ar	ad 2025			
		Tuble 0	2020 4	在 在 方 案	2020	年方案	2020 年 2020 年	三方室	2025	<u>年方案</u>	10 2025 2025 年方:	室 2025	年方案	
	_		- 2020 指标i	+算值	2020	评分值	<u></u> 准则词	^z 分值	2025 指标	计算值	指标评分(^末 2025 直 准则	评分值	
准则	쿬	指标层	交流	直流	交流	直流	交流	直流	交流	直流	交流 直	流 交流	直流	
			微电网	微电网	微电网] 微电网	微电网	微电网	微电网	微电网	微电网 微日	电网 微电网	微电网	
	系统	平均停电次数/ (次・a ⁻¹)	0.99	1.26	86.25	82.50			0.93	1.04	87.08 85	.56		
供电可	系 龍性 ^目	、统平均停电 寸间/(h•a ⁻¹)	2.80	4.64	82.03	70.21	83.67	75 91	2.28	3.15	85.36 79.	.78 86.03	82.06	
	平均	供电可用率/%	99.968	99.947	81.71	69.71			99.974	99.964	85.14 79	.43		
		AIOD/h	4.49	4.95	90.04	88.20			4.15	4.75	91.40 89	.00		
		EDNSI/kW	26.86	28.52	81.10	79.93			25.54	27.6	82.03 80	.58		
	总	费用年值/元	291167	300931	85.82	83.20			286523	295256	87.06 84	.72		
技术公	单位 _{多性} 〔〕	电量供电成本/ 元・(kW・h) ⁻¹]	0.53031	0.55620	5620 93.11 90.4	90.45	84 87	84 57	0.49828	0.51338	97.34 95	.33	86.71	
1又小江(^{n E} ł	投资容量比/ (元・k₩ ⁻¹)	14783	15933	89.67	88.31	04.07	04.37	14741	15890	89.72 88	.36	00.71	
	作	共电能效/%	90.04	92.76	65.95	75.25			89.02	93.48	62.46 77	.71		
	供由	能力/(kW·km)	34 54	78.87	77 52	100.00			34 54	78.87	77.52 100	0.00		
适应	生 角石	 后平均电压	0.9955	0.9987	96.40	98.96	86 45	93 81	0 995 5	0.9987	96.40 98	96 85 50	94 56	
	合	荷适应度/%	53.90	56 10	81.56	82.44	00.10	22.01	46 70	61.80	78.68 84	.72	2	
	X		评分	20.10	01.00	02.11	84,90	84.12	.5.70	01.00		85.73	87.42	

于直流微电网,原因在于现阶段交流配电设备造价 更低,降低了微电网初期投资费用和维护费用,因此 交流微电网成本要低于直流微电网。而在适应性方 面,直流微电网较交流微电网有明显优势,在采用 相同截面导线情况下,直流双极系统传输容量大,系 统供电能效高。

通过对 2020 年和 2025 年交、直流微电网供电 方案的评估结果可见,随着电力电子技术的发展,换 流器、逆变器及斩波器的可靠性得到提高,使得直流 微电网的整体可靠性水平大幅提升,但其水平仍低 于交流微电网;在经济性方面,直流微电网的经济性 有较大提升,2020年及以后,交、直流微电网经济性 大体相当;在适应性方面,直流负荷在未来占据较大 的比例,使直流微电网的负荷适应度提高,并且优势 明显。由上述计算和分析可见,随着电力电子设备 可靠性以及经济性的改善,直流微电网相对于交流 微电网的整体趋势为由相对较弱到大体相当,最后 变为相对较优。

4 结论

本文提出基于改进层次分析法的交、直流微电 网综合评价指标体系和综合评估方法,并利用该方 法分析交、直流微电网算例,通过分析得到以下结论:

a. 对层次分析法进行改进,并基于改进后的层次分析法建立交、直流微电网综合评估方法,改进后的方法求解的指标权重更加合理,判断矩阵的一致性得到了改善;

b. 通过算例验证本文提出的交、直流微电网综 合评价指标体系和综合评估方法,证明了该指标体 系和方法能够有效地评估交、直流微电网方案:

c. 通过对交、直流微电网算例进行评估,结果表 明在目前的技术条件下,交流微电网整体上相对于 直流微电网有一定的优势,但随着技术发展、成本降 低以及负荷类型的变化,直流微电网有很大的发展 潜力,在未来能够显现出相对于交流微电网的优势。

参考文献:

- [1] 王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战
 [J].电力系统自动化,2010,34(2):10-14.
 WANG Chengshan,LI Peng. Development and challenges of distributed generation,the micro-grid and smart distribution system[J]. Automation of Electric Power Systems,2010,34(2): 10-14.
- [2] BARNES M. Real-world microgrid-an overview [C] // IEEE International Conference on System of Systems Engineering. San Antonio, USA: IEEE, 2007: 1-8.
- [3] 王毅,张丽荣,李和明.风电直流微网的电压分层协调控制[J]. 中国电机工程学报,2013,33(4):16-24.
 WANG Yi,ZHANG Lirong,LI Heming. Hierarchical coordinated control of wind turbine-based DC microgrid[J]. Proceedings of the CSEE,2013,33(4):16-24.
- [4] JUSTO J J,FRANCIS M,LEE J. AC-microgrids versus DC-microgrids with distributed energy resources: a review [J]. Renewable and Sustainable Energy Reviews, 2013, 24(10):387-405.
- [5] 吴卫民,何远彬,耿攀. 直流微网研究中的关键技术[J]. 电工技 术学报,2012,27(1):98-104.

WU Weimin, HE Yuanbin, GENG Pan. Key technologies for DC micro-grids[J]. Transations of China Electrotechnical Society, 2012, 27(1):98-104.

- [6] 罗奕,王钢,汪隆君. 微网可靠性评估指标研究[J]. 电力系统自动化,2013,37(5):9-13.
 LUO Yi,WANG Gang,WANG Longjun. Reliability evaluation indices for microgrid[J]. Automation of Electric Power Systems, 2013,37(5):9-13.
- [7] DIALYNAS E N, DAOUTIS L. Modelling and evaluation of microgrids reliability and operational performance and its impact on service quality[J]. European Transactions on Electrical Power, 2011,21(2):1255-1270.
- [8] WANG S,LI Z,WU L, et al. New metrics for assessing the reliability and economics of microgrids in distribution system[J]. IEEE Transactions on Power Systems, 2013, 28(3):2852-2861.
- [9]梁惠施,程林,苏剑. 微网的成本效益分析[J]. 中国电机工程学报,2011,31(增刊):38-44.

LIANG Huishi, CHENG Lin, SU Jian. Cost benefit analysis for

microgrid[J]. Proceedings of the CSEE,2011,31(Supplement): 38-44.

- [10] 杨佩佩. 微网的经济运行分析与研究[D]. 北京:华北电力大学,2009.
 YANG Peipei. Economic operation analysis and study of microgird[D]. Beijing:North China Electric Power University.2009.
- [11] STARKE M R,LI F,TOLBERT L M,et al. AC vs. DC distribution:maximum transfer capability [C] // Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008. [S.I.]:IEEE;2008;1-6.
- [12] STARKE M R,TOLBERT L M,OZPINECI B. AC vs. DC distribution: a loss comparison[C]//Transmission and Distribution Conference and Exposition. Pittsburgh,PA,USA:IEEE/PES,2008: 1-7.
- [13] DASTGEER F,KALAM A. Efficiency comparison of DC and AC distribution systems for distributed generation [C] // Power Engineering Conference, AUPEC. Adelaide, SA, Australia: IEEE, 2009:1-5.
- [14] 郭亚军. 综合评价理论、方法及应用[M]. 北京:科学出版社, 2007:5-74.
- [15] 李晓辉,张来. 基于层次分析法的现状电网评估方法研究[J]. 电力系统保护与控制,2008,36(14):57-61.
 LI Xiaohui,ZHANG Lai. The research on the evaluation system for existing network based on analytic hierarchy process and Delphi method[J]. Power System Protection and Control,2008, 36(14):57-61.
- [16] PAPATHANASSIOU S, HATZIARGYRIOU N, STRUNZ K. A benchmark low voltage microgrid network[C]//Proceedings of the CIGRE Symposium:Power Systems with Dispersed Generation. [S.I.]:CIGRE, 2005:1-8.
- [17] Department of Defense. Military handbook, reliability prediction of electronic equipment: MIL-HDBK-217F[S]. Washington DC, USA:[s.n.], 1991.
- [18] EICHER S, RAHIMO M, TSYPLAKOV E, et al. 4.5 kV press pack IGBT designed for ruggedness and reliability[C]//Industry Applications Conference, 2004, 39th IAS Annual Meeting, Conference Record of the 2004 IEEE. Seattle, USA: IEEE, 2004:1534-1539.
- [19] ARIFUJJAMAN M, CHANG Liuchen. Reliability comparison of power electronic converters used in grid-connected wind energy conversion system[C]//2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG). Aalborg, Danmark; IEEE, 2012;323-329.
- [20] ABB. ABB 变频器价格[EB/OL]. [2015-01-07]. http://www. automation.com.cn/subjectActivities4.html.

作者简介:

刘自发(1973—),男,黑龙江牡丹江人, 副教授,博士,主要研究领域为直流微电 网、直流配网以及分布式电源接入电网分析 (E-mail:tjubluesky@163.com);

韦 涛(1976—),男,甘肃兰州人,高级 工程师,硕士,主要研究方向为城市电网规划;

李梦渔(1986—),男,河南郑州人,硕 刘自发 士研究生,研究方向为直流配网、微电网

评估(E-mail:limengyu86@163.com);

曹志勇(1990—),男,湖北黄冈人,硕士研究生,研究方向为直流微电网运行与控制(E-mail:zhiyongcao@163.com)。

(下转第78页 continued on page 78)

demand in systems with significant installed wind capacity[J]. IEEE Trans on Power Systems, 2005, 22(2); 587-594.

[15] 赵书强,刘晨亮. 基于机会约束的储能日前优化调度[J]. 电网技术,2013,37(11):3055-3059.
ZHAO Shuqiang,LIU Chenliang. Chance-constrained programing based day-ahead optimal scheduling of energy storage[J]. Power System Technology,2013,37(11):3055-3059.

78

- [16] 雷秀娟. 群智能优化算法及其应用[M]. 北京:科学出版社, 2012:127-129.
- [17] 于佳. 基于机会约束规划的风-蓄联合动态调度 [J]. 电网技 术,2013,37(8):2116-2122.

YU Jia. A chance-constrained programing based dynamic economic dispatch of wind farm and pumped-storage power station[J]. Power System Technology, 2013, 37(8):2116-2122.

[18] 陈达威. 微电网中负荷优化分配技术研究[D]. 北京:清华大学,2010.

CHEN Dawei. Study of optimal load distribution of microgrids [D]. Beijing:Tsinghua University,2010.

[19] WANG M Q,GOOI H B. Spinning reserve estimation in microgrids [J]. IEEE Trans on Power Systems, 2011,26 (3): 1164-1174.

作者简介:

任建文(1961—),男,山西吕梁人,教授,博士,主要研究方向为人工智能、电网调度自动化等(E-mail:rjw219@126.com); 渠卫东(1990—),男,江苏徐州人,硕士研究生,主要研究方向为电力系统分析、运

行与控制(E-mail:qwdgeg@163.com)。

Dynamic economic dispatch based on chance-constrained programming for islanded microgrid

REN Jianwen, QU Weidong

(State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources,

North China Electric Power University, Baoding 071003, China)

Abstract: The uncertainty factors, such as renewable power generation fluctuation and incorrect forecasted load, bring difficulty to the economic dispatch of islanded microgrid. A dynamic economic dispatch model based on chance-constrained programming is proposed for islanded microgrid, which adopts the scheduled power outputs of generation units and energy storage unit and the generation-side and load-side managements of renewable power. It represents the wind/photovoltaic power outputs and load forecasting error as random variables and the confidence level of satisfying the spinning reserve as the power-supply reliability of microgrid. The chance constraints are converted into their certain equivalent classes to derive the mathematical expression of expected load loss. A modified particle swarm optimization algorithm is applied to solve the model. Results of case analysis verify the rationality of the proposed model.

Key words: microgrid; islanding mode; dynamic economic dispatch; chance-constrained programming; particle swarm optimization algorithm; electric load forecasting; errors

(上接第66页 continued from page 66)

Comprehensive evaluation based on improved analytic hierarchy process for AC/DC microgrid

LIU Zifa¹, WEI Tao², LI Mengyu¹, CAO Zhiyong¹, LI Weishu¹, HUI Hui²

(1. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China;

2. China Electric Power Research Institute, Beijing 100192, China)

Abstract: According to the features of AC/DC microgrid, a comprehensive evaluation index system is established based on three criteria:power-supply reliability, technical economy and adaptability, while a calculation model and a quantification method are proposed for each index. The 5/5-9/1 scale analytic hierarchy analysis is applied to determine the weight of each index and the determined weights are more reasonable and coherent. The evaluation results of an AC/DC microgrid demonstrate the rationality of the proposed index system and the effectiveness of the proposed method.

Key words: microgrid; evaluation; improved analytic hierarchy process; adaptability; reliability