基于 VSC-MTDC 的大规模海上风电并网系统协调下垂控制方法

彭衍建,李 勇,曹一家

(湖南大学 电气与信息工程学院,湖南 长沙 410082)

摘要:提升电压源型换流器的多端直流输电(VSC-MTDC)系统的传输功率和传输效率对于大规模风电并网而 言至关重要。提出 VSC-MTDC系统协调下垂控制方法,并制定3种典型的控制模式,从而实现风电场最优功 率输送与 VSC-MTDC系统效率的最大化。建立用于海上风电场并网的四端直流输电系统仿真模型,结果表 明,所提协调下垂控制方法不仅能实现有功功率在 VSC-MTDC系统中的最优分配,而且能稳定直流电压,增强 VSC-MTDC系统的运行稳定性。

关键词: VSC-MTDC; 海上风电场; 下垂控制; 有功功率分配; 风电; 并网 中图分类号: TM 614 ________ 文献标识码: A ______ DOI: 10.16081/j.issn.1006-6047.2016.08.003

0 引言

海上风电由于风能丰富、利用率高、占地少等优 点.已经成为现代风电发展的一个重要方向[1-2]。随 着海上风电场的不断发展,海上风电装机容量也逐 渐增加.我国规划到 2020 年底.实现海上风电场装 机容量达 30 GW。目前海上风电一般采用交流输电 方式将电能输送至陆上交流电网,主要优点是系统 可靠性高、结构简单、技术成熟33。但是当海上风电 场离岸较远时,使用基于电压源换流器的直流输 电技术 VSC-HVDC(Voltage Source Converter based High Voltage Direct Current system)的传输成本要 远远低于交流输电,同时由于 VSC-HVDC 并网方式 还可以抑制风电场的功率波动,因此将是未来风电 并网的发展趋势[4-6]。由于受到海上风资源及水深等 因素限制,海上风电场多分布于不同的海域。此外, 陆上功率接受端由于受负荷中心所在的地理位置等 因素限制,也多分布在不同区域[7]。因此两端输电系 统已经不能满足大规模海上风电并网的需要,可实 现多电源供电、多落点受电的多端直流柔性输电 (VSC-MTDC)系统为大规模海上风电场提供了一种 更为灵活的电能输送与并网方式,从而更有效地解 决海上风电并网消纳问题[8-10]。

目前对于 VSC-MTDC 系统应用于海上风电场

收稿日期:2015-07-06;修回日期:2016-05-26

基金项目:国家自然科学基金资助项目(51520105011);湖南 省科技重大专项(2015GK1002);国网湖南省电力公司项目(5216-A213509X);国家电网公司科学技术项目(面向智慧城市的智 能电网园区能源优化管理关键技术研究与应用)

Project supported by the National Natural Science Foundation of China(51520105011), Key S & T Special Project of Hunan Province of China(2015GK1002), Project of Hunan Power Company of State Grid(5216A213509X) and the Science and Technology Project of State Grid Corporation of China (Research and Application of Key Technologies in Smart Grid Park Energy Management and Optimization for Smart City) 连接陆上电网的研究主要集中在系统的暂态稳定 方面,而 VSC-MTDC 系统稳定运行的前提是维持系 统直流电压的稳定^[11-18]。文献[12-13]研究了 VSC-MTDC 系统的直流电压斜率控制方法,利用给定的多 换流站的直流电压-电流特性,实现多个换流站共同 承担直流电压控制的目标,然而并未考虑到系统的 传输损耗。文献[14]提出了一种不需要站间通信的 直流电压下垂控制方法,并且将直流电缆的电压下 降对直流功率传输平衡的影响考虑在内,从而提高 系统的传输效率。文献[15]提出了一种利用下垂控 制原理提高 VSC-MTDC 系统传输功率的控制策略. 然而并没有考虑直流电缆电阻对传输效率的影响。 文献[16]提出了一种将电压裕度与斜率相结合作为 控制目标的新型控制策略,实现了 VSC-MTDC 系统 的多级直流电压稳定控制。文献[17-18]提出了基于 直流电压偏差的协调控制策略,介绍了3种控制模 式,但是并未涉及风电场参与系统协调控制的研究。

本文提出一种应用于含大规模海上风电场的 VSC-MTDC系统协调下垂控制方法,根据海上风电场 输出功率大小制定了3种控制模式,并分别计算了不 同控制模式时电网侧电压源型换流器的下垂系数。 通过对电网侧电压源型换流器的协调下垂控制将有 功功率的分配与系统调度结合起来,以实现大规模 风电的最优功率输送与并网系统运行效率的提升。 最后通过一个含大规模海上风电场的四端 VSC-MTDC系统验证所提控制方法的有效性。

1 VSC-MTDC 协调下垂控制机理分析

1.1 典型四端 VSC-MTDC 系统

本文以一个含大规模海上风电场的四端 VSC-MTDC 系统为例进行研究,拓扑结构见图 1。其中包 含了 2 个不同海域的风电场侧送端换流站 WFVSC

图 1 海上风电场的多端直流输电系统 Fig.1 MTDC system of offshore wind farm

(Wind Farm side VSC)、2个不同区域的陆地电网侧受端换流站GSVSC(Grid Side VSC)以及直流输电线路。

2个不同海域的风电场发出的功率分别通过直 流输电线路1和2传送到汇集电缆5,再通过输电线 路3和4传输至2个GSVSC,从而将风电功率输送 至2个不同区域的交流电网。

1.2 协调下垂控制机理

图 1 所示系统在运行时,由于风速波动的特点, 风电场的输出功率也随机变化,因此 WFVSC 的控 制灵活性较低,并不适用于参与系统的协调控制。因 此本文主要通过对 2 个 GSVSC 的协调下垂控制来 完成风电功率的最优传输。图 2 所示为 GSVSC3 和 GSVSC4 的 U-I 特性曲线。

Fig.2 *U-I* characteristic of GSVSC

根据图 2 可知,当流通 GSVSC3 和 GSVSC4 的电流小于各自的最大限值($I_{at} < I_{at}(max)$)时,有下式成立:

$$K_k = \frac{\Delta E_{gk}}{\Delta I_{gk}} \tag{1}$$

其中, $\Delta E_{gk} = E_{gk} - E_{gl}$, $\Delta I_{gk} = I_{gk}(k = 3, 4)$; K_k 为第k个 GSVSC 的下垂控制常数; $I_{gk}(\max)$ 为流过第k个 GSVSC 的最大限制电流; E_{gl} 为 VSC-MTDC 系统的空载 电压。

当流通 GSVSC3 和 GSVSC4 的电流超出各自设 定的最大限值($I_{gk} \ge I_{gk(max)}$)时,有 $I_{gk} = I_{gk(max)}$ 成立。

综上所述,可以得到流过 GSVSC3 和 GSVSC4 的 电流表达式为:

$$I_{gk} = \begin{cases} (E_{gk} - E_{gl}) / K_k & I_{gk} \leq I_{gk(\max)} \\ I_{gk(\max)} & I_{gk} > I_{gk(\max)} \end{cases}$$
(2)

图 3 所示为 VSC-MTDC 系统的稳态等效电路。 其中, $R_1 - R_5$ 分别代表 5 条直流输电线路的等效电 阻; E_{w1} , E_{w2} , J_{w1} , J_{w2} 和 E_{g3} , E_{g4} , J_{g3} , J_{g4} 分别表示 2 个 WFVSC 和 2 个 GSVSC 的直流电压与电流; K_3 , K_4 分别表示 GSVSC3 和 GSVSC4 的下垂系数,用可变虚拟电阻表 示。根据式(1)可以计算出 GSVSC3 和 GSVSC4 的下 垂控制系数。通过改变 K_3 , K_4 的大小,实现对 2 个 GSVSC 下垂系数的协调控制,进而实现功率最优传 输。2 个 GSVSC 的下垂系数变化特性如图 4 所示。

图 3 四端直流输电系统的稳态等效电路图 Fig.3 Steady-state equivalent circuit of four-terminal VSC-HVDC system

Fig.4 Variation characteristic of droop gains

由图 4 可知,当流过 GSVSC 的电流满足 $I_g < I_{gl}$ 时,GSVSC3 和 GSVSC4 的下垂系数恒定不变,此时输电线路 3 和 4 输送风电功率比例为定值;当 $I_{gl} < I_g < I_{g2}$ 时,GSVSC3 的下垂系数为变量而 GSVSC4 的下垂系数保持恒定,此时输电线路 3 输送风电功率随总电流增大而增加,而输电线路 4 输送的风电功率保持恒定;当 $I_{g2} < I_g < I_{g(max)}$ 时,GSVSC3 和 GSVSC4 的下垂系数均为变量,此时输电线路 3 和 4 按照新的比例输送风电功率。

2 协调下垂控制模式

针对 VSC-MTDC 系统中大规模风电场受风速波

动影响导致风电出力不同的情况,本文提出了适用于2个GSVSC的协调下垂控制方法,并相应地制定出3种控制模式,从而实现海上风电功率向负荷中心的最优传输。

2.1 模式 1:优先控制模式

首先设定 GSVSC4 具有输送功率的优先权,其 U-I 特性如图 5 所示。在该控制模式下,如果海上风 电场输送的总有功功率小于其设定值,风电功率就 会优先通过 GSVSC4 来传输,并且在 GSVSC4 的作 用下维持直流电压稳定,而此时 GSVSC3 并不传输 风电功率。如果海上风电场输送的总有功功率大于 其设定值,那么 GSVSC4 的电流将达到其最大值并 维持不变,电压值随系统的电压变化而改变;此时, GSVSC3 用来输送额外的有功功率,其电流和电压 值均在一定限值内不断增大。图 6 所示为模式 1 的 控制框图。

图 5 模式 1 中 GSVSC3/4 的 U-I 特性 Fig.5 U-I characteristic of GSVSC3/4 in mode 1

上文提到,用虚拟可变电阻来代替下垂系数,模 式 1 下虚拟可变电阻 K_3 的设计如下。首先设定 GSVSC4 所允许通过的最大电流值为 $I_{g4(max)}$,流入汇 集输电线路 5 的总电流为 $I_{g0} \cong I_g \ll I_{g4(max)}$ 时,虚拟可 变电阻 K_3 为无穷大电阻(本文取 10000 Ω),此时电 流全部由 GSVSC4 流过;当 $I_g > I_{g4(max)}$ 时,GSVSC4 流 过的电流恒为 $I_{g4(max)}$,此时根据基尔霍夫电流定律可 得虚拟电阻 K_3 的值为:

$$K_{3} = \frac{I_{g4(\max)}}{I_{g3}} (R_{4} + K_{4}) - R_{3}$$
(3)

此外,GSVSC3还可以稳定直流电压。

2.2 模式 2:最优控制模式

GSVSC3 和 GSVSC4 按照一定的比例输送有功 功率至各自的负荷中心。在系统运行过程中,通过改 变受端换流器直流电压的下垂特性来控制流入 GSVSC3和GSVSC4的电流均不超过所允许流过的 最大电流。GSVSC3和GSVSC4的U-I特性如图7 所示。其中空载电压相同,且GSVSC3的下垂系数大 于GSVSC4的下垂系数。

图 7 模式 2 中 GSVSC3/4 的 U-I 特性

Fig.7 U-I characteristic of GSVSC3/4 in mode 2

有功功率传输最优也就是使 VSC-MTDC 系统 中受端的有功功率损耗最小。根据图 3 可列出电压 方程式:

$$E_{\rm r} = E_{\rm g3} + I_{\rm g3} R_3 \tag{4}$$

$$E_{\rm r} = E_{\rm g4} + (I_{\rm g} - I_{\rm g3})R_4 \tag{5}$$

有功功率的损耗主要指输电线路的铜损耗,其 表达式为:

$$P_{\rm c} = R_3 I_{\rm g3}^2 + R_4 (I_{\rm g} - I_{\rm g3})^2 \tag{6}$$

对式(6)中的 I_{g3} 进行求导,并且令 $P_{c(l_{g3})}=0$,可得 到 I_{a3} 的表达式:

$$I_{g3} = \frac{R_4}{R_3 + R_4} I_g \tag{7}$$

同理可得:

$$I_{\rm g4} = \frac{R_3}{R_3 + R_4} I_{\rm g} \tag{8}$$

由于受端换流器的直流电压相等,即满足 E_{g3} = E_{g40} ,根据式(4)和(5)可得直流电压 E_{g3} 和 E_{g4} 的表达式:

$$\begin{cases}
E_{g3} = E_r - R_3 I_{g3} = E_{gl} + K_3 I_{g3} \\
E_{g4} = E_r - R_4 I_{g4} = E_{gl} + K_4 I_{g4}
\end{cases}$$
(9)

4 个 VSC 换流站直流侧有功功率可由下式来 计算:

$$\begin{cases}
P_1 = E_{w1}I_{w1} \\
P_2 = E_{w2}I_{w2} \\
P_3 = E_{g3}I_{g3} \\
P_4 = E_{w3}I_{w3}
\end{cases}$$
(10)

综合式(9)和(10),可进一步得出 GSVSC3 和 GSVSC4 的最优功率传输比例:

$$n = \frac{P_3}{P_4} = \frac{I_{g3}}{I_{g4}} = \frac{R_4}{R_3} = \frac{K_4}{K_3}$$
(11)

GSVSC4的下垂控制方式与GSVSC3类似,只是 其转折电流更大,在其下垂系数由恒定值转为变量 时,其总电流已超过输电线路所允许流通的最大电 流值,故可忽略GSVSC4的下垂控制,因此GSVSC4 的下垂系数为恒定值。GSVSC3/4的下垂控制流程如 图8所示。

图 8 模式 2 中 GSVSC3/4 的控制框图 Fig.8 Block diagram of GSVSC3/4 control in mode 2

模式 2 的下垂系数按以下过程进行设计。设定 GSVSC3/4 所允许通过的最大电流为 $I_{g34(max)}$,当电流 $I_g 较小时,GSVSC3/4$ 的下垂系数均为恒定值,总电 流按照一定的比例流入 GSVSC3 和 GSVSC4。随着 I_g 的增大(假设 $R_3 > R_4$),GSVSC4 先达到电流限值 $I_{g34(max)}$,此时 $I_g = I_{glimo}$ 为了使功率在该阶段实现最优 分配, K_3 和 K_4 应该满足:

$$K_{3(1)} = \frac{R_3}{R_4} K_4 \tag{12}$$

若总电流 I_g 继续增大,GSVSC3 的下垂系数转 化为变量,以保证流过 GSVSC4 的电流恒为 $I_{g3,4(max)}$, 直到流过 GSVSC3 的电流也达到限值,即 $I_{g3}=I_{g3,4(max)}$, 此时总电流 $I_g=2I_{g3,4(max)}$,在该阶段下垂系数 K_3 可由 下式计算得到.

$$K_{3(2)} = R_4 + K_4 - R_3 \tag{13}$$

总电流 I_g 在 I_{glim} 至 $2I_{g3,4(max)}$ 阶段时,由于 GSVSC4 的电流已经达到限值,此时仅能对 GSVSC3 采用下 垂控制,结合式(12)、(13)得到下垂系数 K_3 与 I_g 的 关系为:

$$K_3 = kI_g + b \tag{14}$$

$$k = \frac{K_{3(2)} - K_{3(1)}}{2I_{e^{3/4}(\text{max})} - I_{\text{glim}}}$$
(15)

$$b = \frac{2K_{3(1)}I_{g_{3/4}(\max)} - K_{3(2)}I_{glim}}{2I_{g_{3/4}(\max)} - I_{glim}}$$
(16)

2.3 模式 3: 混合控制模式

将模式1与模式2相结合可构成新型混合控制 模式,即模式3。首先设定GSVSC4优先输送的风电 功率限值为 P_{max4},如果传输功率超过 P_{max4},GSVSC3和 GSVSC4再按比例分配输送的风电功率。具体控制 框图如图9所示。

可见在模式 3 中,GSVSC4 既可以作为下垂控 制器控制输送的有功功率,也可以作为电压控制器 来稳定直流电压,而 GSVSC3 仅作为下垂控制器参 与系统功率的协调分配。GSVSC3 和 GSVSC4 的下 垂系数设计如下。

图 9 模式 3 中 GSVSC3/4 的控制框图 Fig.9 Block diagram of GSVSC3/4 control in mode 3

(1)当 *I*_g ≤ *I*_{g1} 时,系统工作于模式1的第 I 阶段,此时 GSVSC3 不工作,电流全部流过 GSVSC4,因此此时设置接入输电线路3的虚拟可变电阻 *K*₃ 无穷大。

(2)当 $I_{g1} < I_{g2} < I_{g2}$ 时,系统工作于模式1的第 II 阶段,此时流过GSVSC4的电流 $I_{g4} = I_{g1}$,流过GSVSC3的电流为 $I_{g3} = I_{g} - I_{g4}$,因此根据式(17)可得到接入输电线路3的虚拟电阻 K_{30}

$$\frac{R_3 + K_3}{R_4 + K_4} = \frac{I_{g_4}}{I_{g_3}} \tag{17}$$

(3)当 $I_{g2} \leq I_{g3}$ 时,系统工作于模式2的第 I 阶段。GSVSC3和GSVSC4共同承担风电功率传输 的任务,此时下垂系数 K_3 为恒定值,且满足式(13), 因此系统处于功率最优分配模式。

(4)当 *I*_s>*I*_s, 时,系统工作于模式2的第Ⅱ阶段。 此时下垂系数*K*₃为变量,直到总电流达到最大限值。

控制模式 1 和控制模式 2 相结合而形成了控制 模式 3,因此在模式 3 中涉及 2 个模式的切换,其主 要依据是判断流入 GSVSC3 和 GSVSC4 的总电流 *I*_g 的大小,控制流程图如图 10 所示。

图 10 模式切换流程图 Fig.10 Flowchart of mode switchover

本文研究的用于海上风电功率送出的四端 VSC-MTDC系统中GSVSC采用定直流电压控制方 式作为主控制模式,将协调下垂控制作为辅助控制模 式。由图10可知,根据流入受端换流器总电流大小 可以决定GSVSC的工作模式,并计算出GSVSC的下 垂控制系数。根据图10,可以进一步得出GSVSC的 控制框图,如图 11 所示。根据流入 GSVSC 总电流 I_{dc} 的变化,分别计算相应的下垂系数 K_k ,再经过 I_{dc} 与 K_k 的作用得到各直流电压的给定偏差值 ΔE_{dchref} ,之后与给定电压值 E_{dchref} 、实测电压 E_{dchres} 相比较得到对应的电压偏差 ΔE_k ,最后通过 PI 调节得到 GSVSC 的有功电流参考值 i_{dref} 。此外还通过给定值 Q_{kref} 和实测值 Q_{kres} 的比较得到 ΔQ_k ,最后经过 PI 调节得到无功电流参考值 i_{qkref} 。将 GSVSC3 和 GSVSC4 的有功、无功电流参考值输入到相应 GSVSC 的控制系统,从而达到协调控制 2 个 GSVSC 的目的。

图 11 协调下垂控制框图 Fig.11 Block diagram of coordinatied droop control

2.4 3种控制模式对比分析

对比3种控制模式可得,随着总电流的变化,下 垂系数也发生变化,从而使系统处于不同功率分配模 式,以满足实际控制需求。3种控制模式的对比结果 如表1所示。

表13种控制模式对比	
------------	--

Table 1	Comparison	among	three	$\operatorname{control}$	mode
---------	------------	-------	-------	--------------------------	------

模式	控制目标	协调控制结构	适用场所
1	优先控制 功率分配	GSVSC3 作为 下垂控制器, GSVSC4 作为 电压调节器	GSVSC3 作为备用线路, 功率超过一定值时负荷 由此线路分流
2	最优控制 功率分配	GSVSC3 作为 下垂控制器, GSVSC4 作为 下垂控制器	功率较小时2条线路 损耗最小
3	优先控制 功率分配转 最优控制 功率分配	GSVSC3 作为 下垂控制器, GSVSC4 作为下垂控制 器兼电压控制器	负荷波动较大时 CSVSC3 作为备用线路, 且功率超过一定值时, 本模式可保证线路 总传输功率损耗最小

3 仿真与分析

3.1 系统参数

图 3 所示四端 VSC-MTDC 系统中,5 条直流输 电线路的等值参数如表 2 所示。本文所用 VSC-MTDC 系统中 GSVSC 和 WFVSC 的额定功率均为 500 MW,直流母线电压为 400 kV,允许流过的最大 直流电流均为 1 250 A。上文提到的空载电压 E_g= 400 kV,系统传输的风电总功率为 100 MW。下垂系

表 2 直流电缆的等值参数

Table 2 Equivalent parameters of DC cable	les
---	-----

线路	R/Ω	L/mH	C∕µF	线路	R/Ω	L/mH	C∕µF
1	1.0	10	11.0	4	0.8	8	8.8
2	1.5	15	16.5	5	2.0	40	44.0
3	1.2	12	13.2				

数初始值 K₃=15.55、K₄=10.37。

3.2 风速突变时的仿真结果与分析

3.2.1 模式1仿真结果

结合图 1 所示的四端 VSC-MTDC 系统,根据表 2 所给的参数在 MATLAB/Simulink 中建立了仿真模型。直流输电线路 4 的电压初始值 $E_{g4}^*=12.9$ kV;直流输电线路 3 的初始电压 $E_{g3}=13.0$ kV(略大于 E_{g4}^*)。 其中 WFVSC 的输出电流随风速变化情况如表 3 所示。

表 3 WFVSC 的电流变化情况 Table 3 Variation of WFVSC current

时间/s	$I_{\rm wl}/{\rm A}$	I_{w^2}/A	时间/s	$I_{\rm wl}/{\rm A}$	I_{w^2}/A
0	0	0	0.25	1 000	650
0.05	500	500	0.35	1 2 5 0	1 0 0 0
0.15	500	650	0.45	1250	1 2 5 0

由上文分析可知流过 GSVSC 的最大直流电流 为 1250 A,因此当 $I_g \leq 1250$ A 时, $I_{g4}=I_g$, $I_{g3}=0$, $E_{g4}=$ 12.9 kV;当 $I_g>1250$ A 时, $I_{g4}=1250$ A, $I_{g3}=I_g-1250$, E_{g4} 随 E_{g3} 的变化而变化。

图 12 为无穷大电阻和下垂控制常数 K_3 的变化 规律。图 13 和 14 分别是 VSC-MTDC 系统中电流和 电压(标幺值,后同)的变化情况。由仿真结果可知, 在 0.25 s 时总电流 $I_g(I_{w1} 与 I_{w2} 之 和)$ 超过 1 250 A。 因此在 0.25 s 之前风电功率全部经过 GSVSC4 传输 至交流电网 2,并且 GSVSC4 的电压在 0.25 s 之前也 一直保持给定值。在 0.25 s 时 GSVSC3 开始参与传 输风电功率,即有电流通过 GSVSC3,通过 GSVSC4 的电流一直维持在 1 250 A。0.25 s 后 GSVSC4 的电 压随 GSVSC3 电压变化而变化,0.25 s 后下垂控制常 数 K_3 的变化情况如表 4 所示。

根据表 3 海上风电场输出总电流的变化,结合 3.1 节中 I_{g3} 与 I_{g4}关系可得电流 I_{g3}的变化值分别为:0、 400 A、1 000 A、1 250 A。图 12 所示的随 K₃ 改变的

图 12 模式 1 中无穷大电阻和下垂系数 K₃变化情况 Fig.12 Variation of infinite resistance and K₃ in mode 1

图 13 模式 1 中电流 $I_{g,J_{g3}}$ 和 I_{g4} 变化情况 Fig.13 Variation of $I_{g,J_{g3}}$ and I_{g4} in mode 1

表 4	模式	1	中	K_3	在不	同时	间	段的	变化	情况
-----	----	---	---	-------	----	----	---	----	----	----

Table 4 K_3 for different time periods in mode 1

时间段/s	K_3	时间段/s	K_3
0.25~0.35	33.70	0.45~0.50	9.97
0.35~0.45	12.76		

流过各 VSC 的电流值与理论分析完全一致。由图 14 可知,在 0.25 s 前 GSVSC4 的电压为 12.9 kV,0.25 s 后随 E_g变化而变化,且电压最大偏差不超过 6%,从 而直流电压可以稳定在合理范围内,与理论分析一致。 3.2.2 模式 2 仿真结果

直流输电线路 3、4 允许通过的最大电流 $I_{3/4(max)}$ = 1250 A。根据 2.2 节中的分析可知在模式 2 控制下, 当 $I_g \leq 2083$ A 时, $I_{g3} / I_{g4} = 2/3$; 当 $I_g > 2083$ A 时, $I_{g4} = 1250$ A, $I_{g3} = I_g - 1250$ 。

海上风电场输出电流变化情况如表 5 所示, 模式 2 控制下的仿真结果如图 15 所示。

由表 5 可知,0.25 s 之前风电场输出总电流不 超过 2083 A,此时流过 GSVSC3 和 GSVSC4 的电流 分配比例为 2:3,之后比例逐渐增大,直至 0.35 s 时, 流过 GSVSC3 和 GSVSC4 的电流都达到限值,下垂 控制常数 K₃ 值变化规律如表 6 所示。

电流 *I*₄₃、*I*₄₄ 变化值分别为:400 A、600 A;833 A、 1250 A;1187 A、1250 A;1250 A、1250 A。由图 15 可 知,系统的直流电压随电流的变化而变化,且最大值 不超过 1.05 p.u.,因此通过协调下垂控制可以稳定系

表 5 模式 2 中 WFVSC 的电流变化情况 Table 5 Variation of WFVSC current in mode 2

时间/s	$I_{\rm w1}/{ m A}$	$I_{\rm w2}/{ m A}$	时间/s	$I_{\rm wl}/{ m A}$	$I_{\rm w2}/{ m A}$
0	0	0	0.25	1 187	1 2 5 0
0.05	500	500	0.35	1 2 5 0	1250
0.15	833	1250			

图 15 模式 2 中风速突变仿真结果 Fig.15 Simulative results of wind speed

mutation in mode 2

表 6 模式 2 中 K_3 在不同时间段的变化情况 Table 6 K_3 for different time periods in mode 2

		1	
时间段/s	K_3	时间段/s	K_3
0.05~0.15	15.55	0.25~0.35	10.81
0.15~0.25	15.55	0.35~0.50	9.97

统的直流电压。

3.2.3 模式 3 仿真结果

与模式 2 相同,直流输电线路 3、4 允许通过的 最大电流均为 $I_{g_3,4(max)}$ =1250 A,GSVSC4 的初始电压 E_{g4}^* =0.6 kV。设定模式 1 和模式 2 的分界电流为 I_g = 1000 A,模式 1 内部的分界电流为 I_g =600 A,模式 2 内部的分界电流为 I_g =2083 A。因此可得出:当 I_g 600 A 时, I_{g4} = I_g , I_{g3} =0;当 600 A < I_g <1000 A 时, I_{g4} = 600 A, I_{g3} = I_g -600;当 1000 A < I_g <2083 A 时, I_{g3}/I_{g4} = 2/3;当 I_g >2083 A 时, I_{g4} =1250 A, I_{g3} = I_g -1250。

风电场侧输出电流变化情况如表 7 所示。由 2.3 节可以计算出下垂系数 K₃ 的值,如表 8 所示。模式 3 的仿真结果如图 16 所示。

由 K₃的变化情况可得出流过 GSVSC3、GSVSC4 的电流值分别为:0、500 A;100 A、600 A;300 A、600 A; 400 A、600 A;560 A、840 A;833 A、1 250 A;1 250 A、

表 7 模式 3 中 WFVSC 的电流变化情况 Table 7 Variation of WFVSC current in mode 3

时间/s	$I_{\rm wl}/{ m A}$	$I_{\rm w2}/{ m A}$	时间/s	$I_{\rm wl}/{ m A}$	$I_{\rm w2}/{ m A}$
0	0	0	0.35	400	600
0.05	250	250	0.45	700	700
0.15	300	400	0.50	1 2 5 0	833
0.25	300	600			

表 8 模式 3 中
$$K_3$$
 在不同时间段的变化情况
Table 8 K_3 for different time periods in mode

图 16 模式 3 风速突变仿真结果 Fig.16 Simulative results of wind speed mutation in mode 3

1250 A。电压值也随电流的变化而变化,根据图 16 (b)可看出其电流变化与理论分析完全一致。

为了更形象地说明协调下垂控制策略的优点, 针对表 7 所示的 WFVSC 输出电流情况,研究了不采 用下垂控制时的功率传输特性。由于没有采用下垂 控制($K_3 = K_4 = 0$),根据式(7)、(8)可知,GSVSC3 和 GSVSC4 的电流传输比例始终与输电线路的电阻呈 反比,即:

$$\frac{I_{g_3}}{I_{g_4}} = \frac{R_4}{R_3} \tag{18}$$

此时根据式(7)可知,直流电压 E_{g3} 和 E_{g4} 等于空载电压,此时 GSVSC 采用 U_{de} -P 的控制策略,共同控制直流电压的稳定。风速随机变化且不采用协调下垂控制时,GSVSC 电流传输特性及电压变化曲线如图 17 所示。

图 17 元协调下垂控制时伤具结果 Fig.17 Simulative results, without coordinated droop control

图 17 的仿真结果表明,如果不加入协调下垂控制,多端直流输电系统会按照相同的比例一直输送,如果不加以控制,可能会导致流过 GSVSC 的电流过大,造成 GSVSC 长期过载运行,影响换流器的使用寿命。电压仿真结果表明,U_d-P的控制策略可以稳定各 GSVSC 端的直流电压。

3.3 风速随机变化时的仿真结果与分析

3.3.1 模式1仿真结果

仿真模型参数设置与风速突变时仿真模型参数 一致。图 18 为风速随机变化时下垂控制常数 K₃、电 流、电压变化曲线,可以看出在 0.21~0.31 s 以及 0.42~ 0.50 s 2 个时间段内,GSVSC3 和 GSVSC4 同时承担 传输风电功率的作用,而其余时间电流全部流过 GSVSC4。

3.3.2 模式2仿真结果

风速随机变化规律与模式1相同。VSC-MTDC 系统中下垂系数 K₃、电压、电流变化曲线如图 19 所 示。由仿真结果可知,在 0.49~0.50 s、1.75~1.80 s、 3.6~3.7 s之间风电场发出的有功功率较大,使得输 出总电流较大,因此下垂系数 K₃ 减小,系统中各 VSC 的电压、电流随之变化,可以看出其仿真结果与 理论分析一致。

3.3.3 模式3仿真结果

风速随机变化时,模式3的仿真结果见图20。

4

3

3

3

0.6

4

Fig.20 Simulative results for random wind speed change in mode 3

由图 20 可知,在 0.4~0.5 s 时间段 GSVSC 工作于模 式 2,此时下垂系数 K3 减小,相应的电流 I3/I4 增 大,电压也随之变化。

同理,对风速随机变化时不采用协调下垂控制 的 VSC-MTDC 系统进行研究,海上风电场输出的总 电流 Ig与上述 3 种模式仿真参数相同。得到 GSVSC 电流传输特性如图 21 所示。

由图可知,同样地,如果不采用协调下垂控制策 略,GSVSC3和GSVSC4会一直按照一定的比例输送 风电功率,然而当风电功率较大时,也会造成某一换

Fig.21 Current curves, without coordinated droop control

流器过载运行,如图 21 中在 0.4~0.5 s 时间段,流 过 GSVSC4 的电流甚至达到了 1500 A,超出采用协 调下垂控制时设定的 1250 A,因此可以看出协调下 垂控制策略还有利于换流器的安全稳定运行。

3.4 仿真结果对比分析

受端换流站的协调下垂控制可降低 VSC-MTDC 系统的运行损耗,实现 VSC-MTDC 系统中有功功率 的最优分配。对比 3 种控制模式的仿真结果可以得 出以下结论:模式 1 适用于 GSVSC4 作为主换流站, 而 GSVSC3 作为备用换流站的情况,当风电场输送 功率较大时,GSVSC3 实现分担有功功率的作用;模 式 2 适用于 2 条线路按照相应的比例分配输送有功 功率的情况,最大限度地减少了有功功率损失;模 式 3 主要用于风电出力波动较大的情况,将模式 1 和模式 2 相结合,在 2 条线路共同输送功率时实现 最优功率分配。

4 结论

本文提出了一种基于 VSC-MTDC 的大规模海 上风电并网系统的协调下垂控制方法。针对风电出 力波动的特点制定了3种控制模式以实现多换流器 之间的协调运行。此外分析了3种控制模式的工作 原理,并利用协调下垂控制方法分别计算了3种控制 模式下的下垂系数。最后,在 MATLAB/Simulink 中 建立了四端 VSC-MTDC 系统仿真模型,分别研究了3 种控制模式下风速突变以及风速随机变化时,含大 规模海上风电场的 VSC-MTDC 系统功率传输情况。 仿真结果表明.当海上风电场输出的直流电流较小 时,仅通过其中的一个换流站传输风电功率以避免引 起不必要的损耗,当风电场输出的直流电流超过单 个换流站允许通过的最大功率时,通过对 GSVSC 的 协调下垂控制,可以最大限度地减少输电系统的传输 损耗,从而实现风电功率的最优传输。此外通过对 受端换流站的协调下垂控制还可以稳定直流电压, 增强 VSC-MTDC 系统的运行稳定性。本文的研究对 于 VSC-MTDC 系统的协调优化运行以及提升大规 模风电的消纳水平具有一定的科学意义。

参考文献:

- PERVEEN R,KISHOR N,MOHANTY S R. Off-shore wind farm development:present status and challenges [J]. Renewable and Sustainable Energy Reviews,2014(29):780-792.
- [2] CHEN Z, BLAABJERG F. Wind farm: a power source in future power systems[J]. Renewable and Sustainable Energy Reviews, 2009,13(6):1288-1300.
- [3] CHOU Chihju, WU Yuankang, HAN Giayo, et al. Comparative evaluation of the HVDC and HVAC links integrated in a large offshore wind farm-an actual case study in Taiwan [J]. IEEE Transactions on Industry Applications, 2012, 48(5):1639-1648.
- [4] HE Lina, LIU Chenching, ANDREA P, et al. Distance protection of AC grid with HVDC-connected offshore wind generators [J]. IEEE Transactions on Power Delivery, 2014, 29(2):493-501.
- [5] 李逸超,孙国强,杨义,等. 含经 VSC-HVDC 并网海上风电场的 交直流系统概率最优潮流[J]. 电力自动化设备,2015,35(9): 136-142.

LI Yichao, SUN Guoqiang, YANG Yi, et al. Probabilistic optimal power flow of AC/DC system with offshore wind farm connected to grid via VSC-HVDC[J]. Electric Power Automation Equipment, 2015, 35(9):136-142.

- [6] LIU Hanchao, SUN Jian. Voltage stability and control of offshore wind farms with AC collection and HVDC transmission[J]. IEEE Transactions on Power Electronics, 2014, 2(4):1181-1189.
- [7] 孙蔚,姚良忠,李琰,等. 考虑大规模海上风电接入的多电压等级 直流电网运行控制策略研究[J]. 中国电机工程学报,2015,35 (4):130-132.
 SUN Wei,YAO Liangzhong,LI Yan, et al. Study on operation control strategies of DC grid with multi-voltage level considering large offshore wind farm grid integration[J]. Proceedings of the CSEE,2015,35(4):130-132.
- [8] SILVA B, MOREIRA C L, SECA L, et al. Provision of inertial and primary frequency control services using offshore multiterminal HVDC networks[J]. IEEE Transactions on Sustainable Energy, 2012, 3(4):800-808.
- [9] RODRIGO T P,PAVOL B,SILVIO F R,et al. A novel distributed direct-voltage control strategy for grid integration of offshore wind energy systems through MTDC network [J]. IEEE Transactions on Industrial Electronics, 2013,60(6):2429-2441.
- [10] LIANG Jun, JING Tianjun, ORIOL G B, et al. Operation and control of multiterminal HVDC transmission for offshore wind farms [J]. IEEE Transactions on Power Delivery, 2011, 26 (4): 2596-2604.
- [11] XU L,YAO L Z. DC voltage control and power dispatch of a multi-terminal HVDC system for integrating large offshore wind farms[J]. IET Renewable Power Generation,2010,5(3):223-233.
- [12] PINTO R T, BAUER P, RODRIGUES S F, et al. A novel distributed direct voltage control strategy for grid integration of offshore wind energy systems through MTDC network [J]. IEEE Transactions on Industrial Electronics, 2013, 60(6):2429-2441.
- [13] JEF B, STIJN C, RONNIE B. Modeling of multi-terminal VSC HVDC systems with distributed DC voltage control [J]. IEEE Transactions on Power Systems, 2014, 29(1): 34-42.
- [14] 喻锋,王西田,解大. 多端柔性直流下垂控制的功率参考值修正 方法[J]. 电力自动化设备,2015,35(11):117-122.
 YU Feng,WANG Xitian,XIE DA. Power reference correction method for droop control of VCS-MTDC system [J]. Electric

Power Automation Equipment, 2015, 35(11): 117-122.

- [15] 付媛,王毅,张祥宇,等. 多端电压源型直流系统的功率协调控 制技术[J]. 电力自动化设备,2014,34(9):130-136.
 FU Yuan,WANG Yi,ZHANG Xiangyu,et al. Coordinated power control of VSC-MTDC system [J]. Electric Power
- Automation Equipment, 2014, 34(9):130-136.
 [16] DIERCKXSENS C, SRIVASTAVA K, REZA M, et al. A distributed DC voltage control method for VSC MTDC systems[J]. Electric
- Power System Research, 2012(82):54-58.
 [17] ABDEL-KHALIK A S, MASSOUD A M, ELSEROUGI A A, et al.
- Optimum power transmission-based droop control design for multi-terminal HVDC of offshore wind farms[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3401-3409.
- [18] XU L,YAO L,BAZARGAN M. DC grid management of a multi-terminal HVDC transmission system for large offshore

wind farms [C]//International Conference on Sustainable Power Generation and Supply. Nanjing, China: IEEE , 2009:1-7.

作者简介:

彭衍建(1988—),男,山东济宁人,博士 研究生,主要研究方向为风电场并网稳定性 控制(E-mail:yjpeng1989@gmail.com);

李 勇(1982—),男,河南信阳人,教 授,博士研究生导师,博士,主要研究方向为 电力系统优化与控制、电能质量分析与控制 (**E-mail**:yongli@hnu.edu.cn);

(**L-man**; yongn@mu.euu.en); 曹一家(1969—),男,湖南益阳人,副校

长,教授,博士研究生导师,博士,主要研究方向为电力系统优 化与控制、智能控制系统与决策(E-mail;vjcao@hnu.edu.cn)。

Coordinated droop control for large-scale offshore wind farm grid-connected based on VSC-MTDC system

PENG Yanjian, LI Yong, CAO Yijia

(College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

Abstract: It is especially essential for large-scale offshore wind farm to improve the transmission power and efficiency of VSC-MTDC systems. A coordinated droop control method for the grid side's converters is proposed, and then, three typical control modes are made to realize the optimal transmission of the active power, which is generated from the large-scale wind farms. Thus, the transmission efficiency of VSC-MTDC can be improved effectively. A 4-terminal VSC-HVDC model is carry out in MATLAB/Simulink to prove the proposed three control modes respectively. The simulation results show that the proposed control modes can achieve the coordination distribution of the active power, stabilize the DC voltage and improve the operation stability of the VSC-MTDC system.

Key words: VSC-MTDC; offshore wind farm; droop control; active power distribution; wind power; gridconnection

(上接第 15 页 continued from page 15)

Performance analysis and monitoring based on SCADA data and Gaussian process regression for wind turbine power generation

GUO Peng, JIANG Manli, LI Hangtao

(School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

Abstract: According to the operational theories of wind turbine and based on the SCADA data, the major influencing factors of its power generation performance are analyzed, including the environmental factors and the operating conditions of wind turbine components, such as pitch system, yaw system and control system. Gaussian process regression is applied in the construction of power generation performance model to adapt to the high randomness and strong noise of wind turbine operating data. The constructed model describes the relationship between the wind power utilization coefficient and its influencing factors, which is applied to monitor the abnormal change of wind turbine power generation performance in real time by analyzing the residual of model prediction with the real time operating data as the model inputs. The feasibility of the proposed method is verified by the simulation based on the actual operating data of a wind farm.

Key words: wind turbines; power generation performance; monitoring; wind power utilization coefficient; Gaussian process regression; SCADA data