176

UPFC 有功控制引起的交互影响研究

马朋1,刘青1,邹家平2,刘诚3

(1. 华北电力大学 新能源电力系统国家重点实验室,河北 保定 071003;

2. 广东国华粤电台山发电有限公司,广东 台山 529228;

3. 中国神华能源股份有限公司国华惠州热电分公司,广东 惠州 516082)

摘要:统一潮流控制器(UPFC)的多个控制器之间存在交互影响,这种交互作用会影响控制器的工作性能。 分析了 UPFC 有功参考值的变化对电压控制器所控电压的影响,阐述了利用数学公式反映其影响的方法的局 限性。利用 PSCAD/EMTDC 时域仿真,得出了电压动态数据,并用来拟合 Logistic 模型,得到有功补偿度变化 量对节点电压变动值影响的数学表达式。该数学表达式能够针对不同有功补偿度变化量进行交互影响程 度的预测,有利于分析 UPFC 有功潮流控制给并联侧电压控制器运行带来的影响。

关键词:统一潮流控制器;交互影响;潮流控制;电压控制器;电压变动值;Logistic 模型

中图分类号: TM 721.2 文献标识码: A

DOI: 10.16081/j.issn.1006-6047.2017.01.028

0 引言

统一潮流控制器 UPFC (Unified Power Flow Controller)作为柔性交流输电系统 FACTS (Flexible AC Transmission Systems)的第3代控制器,同时具备静 态同步补偿器和静态同步串联补偿器的特点,具有 独立控制有功功率、无功功率以及电压的功能^[11],被 认为是最具创造性且功能最强大的 FACTS 元件,因 而受到了产业界和学术界的普遍重视。

由于 UPFC 内部各控制器一般基于各自的控制 目标单独制定控制策略,故可能导致 UPFC 的多个 控制通道间产生负的交互影响,这种交互作用会 影响到控制器的工作性能,甚至破坏电力系统的 稳定性^[2-5]。相关的研究^[6-7]表明,UPFC 的多个控制 器之间存在负交互影响,系统有闭环失稳的可能性。 许多学者针对交互影响存在的原因亦做了大量 研究^[8-10],发现在稳态时通过 UPFC 内部的有功功 率(即流过直流电容支路的功率)的大小和方向, 是影响 UPFC 各控制功能之间交互影响强弱的重 要因素。

然而,UPFC 内部各控制器间的交互影响程度与 串、并联侧变流器间所交换有功功率的联系仍有待 进一步研究。本文根据 UPFC 的工作原理,定性分 析了 UPFC 有功参考值的变化对电压控制器所控电 压的影响,阐述了利用公式表达有功参考值变化与 电压之间影响的几种途径,利用时域仿真方法采集 动态电压数据,用 Logistic 模型对其进行拟合,得出 有功补偿度变化量对节点电压变动值影响的数学表 达式。该数学表达式有利于分析 UPFC 有功潮流控 制对并联侧电压控制器运行带来的影响。

收稿日期:2015-11-08;修回日期:2016-10-10

1 UPFC 基本工作原理

UPFC 相当于一个自给式电压源,具有交换无功 功率和有功功率的能力,其补偿电压的幅值和相位 角与线路电流和传输角无关。故采用 UPFC 能得到 的最大输送功率和受端无功功率与传输角无关,其 能直接控制串联变流器所安装的输电线上的潮流。 UPFC 基于电压源的等效电路如图 1 所示,串联部分 等效为电压源 U_{se} 和电抗 X_{se} ,并联部分等效为电压 源 U_{sh} 和电抗 X_{sh} ,母线 k 为附加节点, Z_{ij} 为输电线路 ij 间阻抗, U_i , U_i 分别为输电线路 ij 首、末端电压。

图 1 UPFC 基于电压源的等效电路 Fig.1 Equivalent circuit of UPFC based on voltage source

以 j 端电压为参考电压且忽略输出线路的有功 功耗,即,

$$\boldsymbol{U}_{i} = U \mathrm{e}^{\mathrm{j}\delta} = U(\cos\delta + \mathrm{j}\sin\delta) \tag{1}$$

$$U_j = U e^{j0^\circ} = U \tag{2}$$

其中,U、 δ 分别为以j端电压为参考时,i端电压 U_i 的幅值和相角。

串联侧变流器与系统交换的有功、无功功率(忽略电阻)为:

$$P_{\rm se} = \frac{U_j U_{\rm se} \sin(\delta + \gamma)}{X_{\rm se}} = \frac{U_j U_p}{X_{\rm se}} = \frac{U U_p}{X_{\rm se}}$$
(3)

$$Q_{\rm se} = \frac{U_j U_{\rm se} \cos(\delta + \gamma)}{X_{\rm se}} = \frac{U_j U_q}{X_{\rm se}} = \frac{U U_q}{X_{\rm se}}$$
(4)

其中, γ 为 U_{se} 与 U_{i} 的夹角; U_{p} 、 U_{q} 分别为有功、无功补偿电压。

并联侧变流器与系统交换的功率(忽略电阻)为:

$$P_{\rm sh} = U_{\rm sh}g_{\rm sh} \left[-U_{\rm sh} + U_i \cos(\theta_{\rm sh} - \delta) \right]$$
(5)

$$Q_{\rm sh} = U_{\rm sh} b_{\rm sh} [U_{\rm sh} + U_i \cos(\theta_{\rm sh} - \delta)]$$
(6)

$$P = P_{\rm sh} = P_{\rm se} \tag{7}$$

其中, g_{sh} 、 b_{sh} 分别为并联侧变流器的等效电导、等效 电纳; θ_{sh} 为以 U_i 为参考时 U_{sh} 的相角。

同样忽略并联侧变流器连接到系统的电阻,并 联侧变流器看作 STATCOM 时吸收的无功功率为:

$$Q_{\rm sh} = \operatorname{Im}(\boldsymbol{S}) = \operatorname{Im}\left(\boldsymbol{U}_i \frac{\boldsymbol{U}_{\rm sh} - \boldsymbol{U}_i}{-jX_{\rm sh}}\right) = \frac{\boldsymbol{U}_{\rm sh} - \boldsymbol{U}_i}{X_{\rm sh}} \boldsymbol{U}_{\rm sh}$$
(8)

2 UPFC 参考值的取值对系统电气量的影响

通过对 UPFC 各控制器参考值的设定和改变, 潮流控制器和电压控制器能够调节 UPFC 安装点的 电压水平和潮流分布,进而改变电力系统的运行工 况^[11]。设并联侧变流器补偿电压 U_{sh} 的参考值为 U_{iref};串联侧变流器补偿有功功率 P_{se} 的参考值为 P_{ref}, 补偿无功功率 Q_{se} 的参考值为 Q_{ref}。下面分析根据系 统运行需要,UPFC 补偿功率的参考值变化时对系统 电气量的影响。

2.1 有功补偿参考值 P_{ref} 改变

保持 U_{iref} 、 Q_{ref} 的初始值不变, P_{ref} 取值调整为 $P'_{ref}=P_{ref}+\Delta P_{ref}$ 时,式(5)中 P_{sh} 改变, U_{sh} 保持为 U_{iref} 不 变,故当且仅当 P_{ref} 的设定值发生变化时,式(7)中的 相位角 θ_{sh} 、 δ 会发生相应的变化。 δ =60°时有功调整 的系统相量示意图如图 2 所示。由图 2 可知, θ_{sh} 、 δ 变化会引起 Q_{sh} 发生变化,即 Q_{sh} 不再为 0,节点电压 U_i 的值会发生相应变动。

图 2 δ=60°时有功潮流控制的系统相量示意图 Fig.2 Phasor diagram of active power-flow control with δ=60°

2.2 无功补偿参考值 Q_{ref} 变化

保持 U_{iref} 、 P_{ref} 的初始值不变, Q_{ref} 取值调整为 $Q'_{ref} = Q_{ref} + \Delta Q_{ref}$ 时, 仅 U_q 会发生变化, 不会对并联侧 变流器补偿的无功 Q_{sh} 产生影响, $\delta = 60^{\circ}$ 时无功调整 的系统相量示意图如图 3 所示。由图 3 可知, 当 Q_{ref} 的设定值发生变化时, 不会对电压控制器所控电压

图 3 $\delta = 60^{\circ}$ 时无功潮流控制系统相量示意图 Fig.3 Phasor diagram of reactive power-flow control with $\delta = 60^{\circ}$

 U_i 的值产生影响。

由以上分析知:

a. 潮流控制器的有功补偿值 P_{ref} 变化时,电压 控制器所控节点电压 U_i 的值会发生变化;

b. 潮流控制器的无功补偿值 Q_{ref} 变化时,电压控制器仍可稳定运行, Q_{ref} 的改变不会对节点电压 U_i 的值产生影响。

2.3 有功调节与电压交互影响的数学表达研究

以 UPFC 的阻抗模型^[12]为基础,对 UPFC 所在 输电线路的两节点网络进行分析,由于输电线路每千 米的电纳一般为 10⁻⁶ 数量级,故为简化计算,可忽略 输电线路的对地电纳,对电力线路电压进行计算,得:

$$U_{i} = \left(U_{j} + \frac{P_{j}R_{ij}' + Q_{j}X_{ij}'}{U_{j}}\right) + j\left(\frac{P_{j}X_{ij}' - Q_{j}R_{ij}'}{U_{j}}\right)$$
(9)

输电线路损耗方程为:

$$\Delta S_{ij} = \frac{P_i^2 + Q_j^2}{U_j^2} R'_{ij} + j \frac{P_j^2 + Q_j^2}{U_j^2} X'_{ij}$$
(10)

其中, $Z'_{ij} = R'_{ij} + jX'_{ij} = (R_{ij} + R_p) + j(X_{ij} + X_p), R_{ij}, X_{ij}$ 分别 为输电线路电阻和电抗, R_p, X_p 分别为 UPFC 等效电 阻和电抗; P_i, Q_i 分别为i节点注入有功、无功功率; P_i, Q_i 分别为j节点注入有功、无功功率。

此时,存在 $U_i, U_j, \Delta S_{ij}$ 3 个未知数,但只能列写 2 个方程,当 Z_p 改变后, U_i, U_j 受外部电网的制约, 无法求出节点电压变化与线路阻抗变化量的具体 表达式。

将 UPFC 放入电网中考虑,以潮流计算的方法 进行分析。

UPFC 的控制作用可表示为 $U_i = U_{iref}, P_{ij} + jQ_{ij} = P_{ref} + jQ_{ref}, 对 i 节点的注入功率进行计算^[13-14],得:$

$$P_{ij} = \left(\frac{P_{ref}^2 + Q_{ref}^2}{U_j^2} + b_{ij}^2 U_j^2 + 2b_{ij} Q_{ref}\right) R_{ij} - P_{ref}$$
(11)

$$Q_{ij} = -U_i I_q + \operatorname{Im}(\boldsymbol{U}_i \boldsymbol{I}_{ij}^*)$$
(12)

其中, I_q 为以 U_i 为参考, I_{se} 垂直分量的幅值。

系统节点数为 n,包含 r 个 PV 节点,则传统的 潮流计算要求解的方程需包含 n-1 个有功方程和 n-r-1 个无功方程,即:

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} H & N \\ M & L \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta U/U \end{bmatrix}$$
(13)

由于 UPFC 对节点电压的控制作用,*i* 节点在计算时从 PQ 节点转化为 PV 节点,无功方程则用电压 差方程代替,即:

$$\Delta U_i = U_{\rm ref} - U_i = 0 \tag{14}$$

UPFC 调节潮流的作用,可采用节点功率等值的 方法,将 UPFC 连同所在支路去掉,在支路的两端以 注入附加功率的形式放进功率平衡方程中,即:

$$\Delta P_i' = \Delta P_i - P_{ij} = 0$$

$$\Delta Q_i' = \Delta Q_i - Q_{ij} = 0$$

$$\Delta P_j' = \Delta P_j - P_{ref} = 0$$

$$\Delta Q_i' = \Delta Q_i - Q_{ref} = 0$$

(15)

对模型求解时,UPFC 所在支路被当作断开,故 雅可比矩阵中的对应项需修正。

由式(11)得,*i*节点有功功率注入量对应雅可比 式子的增量为:

$$\frac{\partial P_{ij}}{\partial U_j} U_j = 2R_{ij} \left(b_{ij}^2 U_j^2 - \frac{P_{\text{ref}}^2 + Q_{\text{ref}}^2}{U_j^2} \right)$$
(16)

对 N_{ii}、M_{ii}、L_{ii} 进行修正后的雅可比项分别为:

$$N'_{ij} = N_{ij} - 2R_{ij} \left(b_{ij}^2 U_j^2 - \frac{P_{\text{ref}}^2 + Q_{\text{ref}}^2}{U_j^2} \right)$$
(17)

$$M'_{ij} = 0 \tag{18}$$

 $L'_{ij} = 0 \tag{19}$

有功参考值改变,即改变潮流计算的雅可比矩 阵,可计算出节点电压的变化,但一般的潮流计算是 数值解法,无法进行参数运算。因此解析出节点电 压变化的具体表达式很困难。

若是想得出 UPFC 有功补偿与节点电压间的交 互影响,必然要假定一个已知的系统,对不同补偿度 情况进行数据采集,从采集的数据来分析或是拟合 它们的交互影响关系。

3 补偿度设定及仿真分析

本文以图 4 所示 IEEE 的标准 3 机 9 节点系统^[14] 为例,在 PSCAD/EMTDC 中进行仿真,UPFC 装置安 装在母线节点 7、8 之间,UPFC 的并联侧电压控制器 采用电压控制模式,串联侧潮流控制器采用直接电 压调节模式。

图 4 IEEE 3 机 9 节点系统图 Fig.4 IEEE 3-machine 9-bus system

规定串联侧变流器补偿的有功功率流向 UPFC 所在线路为正,假设5s时潮流控制器根据系统需要 调整有功补偿参考值,来稳定输电线路有功潮流。

3.1 有功补偿度的设定

FACTS 装置通常根据各自的功能来定义补偿 度^[15-18],其中 UPFC 是具有多种功能的 FACTS 元件, UPFC 的补偿度需根据不同的控制目标进行定义。 定义 UPFC 进行有功潮流调节时的补偿度 $\lambda = U_p/U_N$ $(U_N$ 为系统标称电压),来体现 UPFC 向系统补偿有 功功率的大小。

3.2 有功补偿度改变产生的交互影响

定义有功调节补偿度变化量 $\Delta \lambda = \Delta U_p / U_N$,来体现 UPFC 串、并联侧换流器间交换的有功功率(即对 UPFC 所在线路调整的有功潮流)的变化。 3.2.1 UPFC 补偿度 λ 未变化

UPFC 装置补偿度未变化(即补偿度变化量 $\Delta\lambda$ 为 0)时, UPFC 工作情况如图 5 所示, 并联侧控制器 稳定运行, UPFC 接入点电压维持稳定。图中, U_7 为 UPFC 接入点节点 7 的母线电压; U_{de} 为 UPFC

图 5 补偿度不变时 UPFC 的工作情况 Fig.5 Operating conditions of UPFC with constant compensation degree

3.2.2 负向动态有功补偿

根据系统需要,UPFC 装置向所在线路补偿负的 有功功率,不同补偿度变化量对应电压控制器所控 电压 U₇ 波动情况如图 6 所示(U₇ 为标幺值)。由图 6 可知,UPFC 接入点电压会发生波动,且补偿度变化 量不同时,UPFC 接入点节点电压波动情况亦不同, 严重时会使并联侧闭环系统失去稳定。

Fig.6 Voltage fluctuation during negative compensation

根据系统需要,UPFC 装置向所在线路补偿正的

^{3.2.3} 正向动态有功补偿

有功功率调整线路潮流,UPFC 接入点电压 U₇ 波动 情况如图 7 所示(U₇ 为标幺值)。由图 7 可知,当有 功补偿度变化量不同时,UPFC 接入点节点电压波 动情况也不同,严重时会造成并联侧闭环系统失去 稳定。

4 交互影响指标选取及 Logistic 模型拟合分析

4.1 交互影响指标的选取

电压波动是由一系列电压(方均根值)变动引起的。根据电能质量国家标准^[19],电压波动的合格判据以电压变动限值为衡量标准,不同电压等级对应不同的电压变动限值,对于 35 kV < $U_{\rm N} \leq 220$ kV 的高压系统,电压变动限值为 2.5%。本文将电压变动值 $d = \frac{U_{\rm imax} - U_{\rm imin}}{U_{\rm iN}}$ 作为有功潮流控制器与电压控制器运行间的交互影响指标。

时域仿真能展示出动态的电压数据,这是潮流 计算无法比拟的优势。利用 PSCAD 仿真不同有功 补偿度变化量对应的电压变动值,时域仿真所得交 互影响指标 d 的部分数据如表 1、表 2 中 d_k 所示。 其中,k 代表采样数据的组号, $\Delta\lambda_k$ 为有功补偿度变 化量, d_k 为 UPFC 接入点电压 U_7 的变动值(交互影 响指标), y_k 为采样数据 d_k 的 2 条渐近线转化为 0 和 1 后的对应值, ω_k 为对数据 y_k 求取的权数。

UPFC 装置进行负向有功补偿,随着补偿度变化 量 $\Delta \lambda$ 值的增大,节点 7 的电压变动值开始稳定一段,然后经历随 $\Delta \lambda$ 的增大而增大的阶段,最后逐渐 趋于一个稳定值。

UPFC 装置对所在输电线路进行正向有功补偿, 随着补偿度变化量 $\Delta \lambda$ 的增加,节点 7 的电压变动 值开始稳定一段,然后随着 $\Delta \lambda$ 的增加而减小,最后 逐渐趋于一个稳定值。

4.2 分组数据的 Logistic 模型

采用分组数据的 Logistic 回归模型^[20-21],对 UPFC 有功补偿采样数据进行拟合,设组号为k,自变量为 $\Delta\lambda_k$,因变量为 d_k (表示在自变量 $\Delta\lambda_k$ 的条件下,原 0-1型随机变量等于1的比例)。

为了更好地求取回归模型,将 UPFC 进行负向

表 1	UPFC	负向	补偿	时的采	样数据
Table	1 Sam	pled	data	during	negativ

compensation of UPFC

		I		
组号 k	$\Delta \lambda_k$	d_k	y_k	$\boldsymbol{\omega}_k$
1	-0.001	0.19157	1	0
2	-0.01	0.19157	1	0
3	-0.05	0.18693	0.96742	3.15160
4	-0.10	0.18693	0.96742	3.15160
5	-0.15	0.17672	0.89573	9.33910
6	-0.20	0.15305	0.72955	19.7306
7	-0.25	0.13141	0.57761	24.3976
8	-0.30	0.11633	0.47174	24.9201
9	-0.35	0.09880	0.34866	22.7097
10	-0.40	0.08500	0.25177	18.8383
11	-0.45	0.07716	0.19672	15.8026
12	-0.50	0.05840	0.06501	6.07880
13	-0.55	0.05124	0.01474	1.45270
14	-0.60	0.05125	0.01481	1.45950
15	-0.65	0.04983	0.004 84	0.48210
16	-0.70	0.04930	0.00112	0.11220
17	-0.75	0.05186	0.01909	1.87320
18	-0.80	0.05098	0.01291	1.27520
19	-0.85	0.04914	0	0
20	-0.90	0.04914	0	0
21	-0.95	0.04914	0	0
22	-1.00	0.04914	0	0

表 2 UPFC 正向补偿时的采样数据

Table 2 Sampled data during positive compensation of UPFC

组号 k	$\Delta\lambda_k$	$d_{\scriptscriptstyle k}$	y_k	$\boldsymbol{\omega}_k$	
1	0.001	0.14263	1	0	
2	0.01	0.14263	1	0	
3	0.05	0.14263	1	0	
4	0.10	0.14263	1	0	
5	0.15	0.14263	1	0	
6	0.20	0.14263	1	0	
7	0.25	0.14263	1	0	
8	0.30	0.14164	0.97756	2.193 50	
9	0.35	0.13560	0.84066	13.3950	
10	0.40	0.13280	0.77719	17.3161	
11	0.45	0.12568	0.61582	23.6586	
12	0.50	0.12440	0.58680	24.2464	
13	0.55	0.11883	0.46056	24.8445	
14	0.60	0.11315	0.33182	22.1716	
15	0.65	0.10970	0.25362	18.9300	
16	0.70	0.09901	0.01133	1.12040	
17	0.75	0.09511	0.00680	0.67530	
18	0.80	0.09796	0.00249	0.24870	
19	0.85	0.09851	0	0	
20	0.90	0.09851	0	0	
21	0.95	0.09851	0	0	
22	1.00	0.098.51	0	0	

有功补偿时所得采样散点图的 2 条渐近线转化为 0 和 1,即因变量 d_k 化为 y_k 。假设每组样本数为 100 (即 n_k =100,其中 k=1,2,…,n)计算权数 ω_k, y_k, ω_k 的计算结果如表 1 所示。建立 SPSS 的数据集,借助 SPSS 软件求取用加权最小二乘法得到的 Logistic 回归方程。

负向有功补偿时,建立的 Logistic 回归模型为:

$$\hat{y}_k = \frac{1}{1 + e^{-3.81 - 13.6 \times \Delta \lambda_k}}$$
(20)

将式(20)还原为因变量为 d_k 的 Logistic 回归方 程,可得:

$$\hat{d}_k = 0.04914 + 0.1443 \times \frac{1}{1 + e^{-3.81 - 13.6 \times \Delta \lambda_k}}$$
 (21)

UPFC 向所在线路进行不同程度负向有功补偿 所得采样散点图及 Logistic 回归模型如图 8 所示。

同理,利用表 2 中正向有功补偿所得数据进行 Logit 变换及应用加权最小二乘法,可得因变量为 y_k 的 Logistic 回归模型为:

$$\hat{y}_k = \frac{1}{1 + e^{-7.13 + 14.5 \times \Delta \lambda_k}}$$
(22)

将式(22)还原为因变量为 d_k 的 Logistic 回归方 程,可得:

$$\hat{d}_k = 0.09851 + 0.04412 \times \frac{1}{1 + e^{-7.13 + 14.5 \times \Delta \lambda_k}}$$
 (23)

UPFC 向所在线路进行不同程度正向有功补偿 所得采样散点图及 Logistic 回归模型如图 9 所示。

图 9 Logistic 模型拟合正向补偿散点图 Fig.9 Scatter diagram of positive compensation for Logistic model fitting

4.3 Logistic 模型的拟合有效性验证

回归方程对样本观测值的拟合程度需用样本决定系数 R²=1-SSE/SST 来判断,UPFC 进行有功补偿时的实际采样值与拟合得到的 Logistic 回归模型预测值对比如表 3 所示。

残差平方和为:

SSE =
$$\sum_{k=1}^{n} \left(d_k - \hat{d}_k \right)^2 = \sum_{k=1}^{n} e_k^2$$
 (24)

回归平方和为:

表 3 实际采样值 d_k 与回归预测值 \hat{d}_k 对比表

Table 3 Comparison between sampled d_k and predicted \hat{d}_k

组号	负向有功补偿			正向有功补偿		
k	$\Delta \lambda_k$	d_k	$\hat{d}_{\scriptscriptstyle k}$	$\Delta \lambda_k$	d_k	\hat{d}_k
1	-0.001	0.19157	0.190271	0.001	0.14263	0.142594
2	-0.01	0.19157	0.189869	0.01	0.14263	0.142589
3	-0.05	0.18693	0.187396	0.05	0.14263	0.142557
4	-0.10	0.18693	0.181977	0.10	0.14263	0.142480
5	-0.15	0.17672	0.172438	0.15	0.14263	0.142321
6	-0.20	0.15305	0.157131	0.20	0.14263	0.141997
7	-0.25	0.13141	0.135877	0.25	0.14263	0.141343
8	-0.30	0.11633	0.111608	0.30	0.14164	0.140053
9	-0.35	0.098 80	0.089383	0.35	0.13560	0.137620
10	-0.40	0.08500	0.072781	0.40	0.13280	0.133402
11	-0.45	0.07716	0.062170	0.45	0.12568	0.127047
12	-0.50	0.05840	0.056049	0.50	0.12440	0.119248
13	-0.55	0.05124	0.052725	0.55	0.11883	0.111767
14	-0.60	0.05125	0.050979	0.60	0.11315	0.106108
15	-0.65	0.04983	0.050077	0.65	0.10970	0.102549
16	-0.70	0.04930	0.049616	0.70	0.09901	0.100563
17	-0.75	0.05186	0.049382	0.75	0.09511	0.099529
18	-0.80	0.05098	0.049263	0.80	0.09796	0.099009
19	-0.85	0.04914	0.049202	0.85	0.09851	0.098753
20	-0.90	0.04914	0.049171	0.90	0.09851	0.098628
21	-0.95	0.04914	0.049156	0.95	0.09851	0.098567
22	-1.00	0.04914	0.049148	1.00	0.09851	0.098538

$$SST = \sum_{k=1}^{n} \left(d_k - \overline{d} \right)^2 \tag{25}$$

由表 3 中数据得,UPFC 进行负向有功补偿时, SSE=0.000586,SST=0.202017,故 R²=0.997099,R²的取值在[0,1]区间内,越接近 1,表明回归拟合效 果越好,这说明式(21)所示 Logistic 回归模型的拟合 效果很好;UPFC 装置进行正向有功补偿时,SSE= 0.000211283,SST=0.007962,R²=0.97346,说明式 (23)所示 Logistic 回归模型的拟合效果亦很好。故 应用拟合后的 Logistic 回归模型即可预测不同补偿 度变化量时电压变动值的大小,可用来分析 UPFC 装 置有功潮流控制与电压控制间的交互影响程度。

5 结论

本文针对 UPFC 参考值的不同取值对系统电气 量的影响进行了分析,表明 UPFC 调整有功潮流会 引起节点电压波动。通过 PSCAD/EMTDC 仿真得到 了不同补偿度变化量时电压的变化情况,发现不同 的补偿度变化量均造成不同程度的电压波动。提出 了以 UPFC 接入点节点电压变动值作为计量 UPFC 串、并联侧控制器间交互影响强弱的指标,运用 Logistic 模型有效拟合了交互影响曲线,完成不同补 偿度变化量下交互影响程度的预测,有利于分析 UPFC 有功潮流控制时对并联侧电压控制器运行带 来的影响。

180

参考文献:

[1] 王晶,陈学允. UPFC 对动态电能质量影响的分析研究[J]. 电 工技术学报,2004,19(1):44-48.

WANG Jing, CHEN Xueyun. Study of the impacts of UPFC on dynamic power quality [J]. Transactions of China Electrotechnical Society, 2004, 19(1):44-48.

- [2]曹一家,陶佳,王光增,等. FACTS 控制器间交互影响及协调控制研究进展[J].电力系统及其自动化学报,2008,20(1):1-8.
 CAO Yijia,TAO Jia,WANG Guangzeng, et al. Research progress on interaction and coordinated control among FACTS controllers
 [J]. Proceedings of the CSU-EPSA,2008,20(1):1-8.
- [3] ZOU Z Y, JIANG Q Y, CAO Y J, et al. Normal form analysis of the interactions among multiple SVC controllers in power systems [J]. IEE Proceedings-Generation, Transmission and Distribution, 2005, 152(4):469-474.
- [4] 祁桂刚,黎灿兵,曹一家,等. SVC 和 TCSC 控制器间动态交互影 响分析[J]. 电力自动化设备,2014,34(7):65-69.
 QI Guigang,LI Canbing,CAO Yijia,et al. Analysis on dynamic interaction between SVC and TCSC controllers[J]. Electric Power Automation Equipment,2014,34(7):65-69.
- [5] 徐泰山,朱广飞,鲍颜红,等. 广域直流阻尼控制中多模式交互影响在线分析[J]. 电力自动化设备,2016,36(5):49-54.
 XU Taishan,ZHU Guangfei,BAO Yanhong, et al. Online analysis of multi-mode interaction in wide-area HVDC damping control [J]. Electric Power Automation Equipment,2016,36(5):49-54.
- [6] 徐榕,于泳,杨荣峰,等. H 桥级联 STATCOM 直流侧电容电压平 衡控制方法[J]. 电力自动化设备,2015,35(5):15-22.
 XU Rong,YU Yong,YANG Rongfeng, et al. DC capacitor voltage balance control of H-bridge cascaded STATCOM[J]. Electric Power Automation Equipment, 2015, 35(5):15-22.
- [7] 桂帆,江道灼,吕文韬,等. 限流式统一潮流控制器参数设计及优化[J]. 电力自动化设备,2013,33(11):160-164.

GUI Fan, JIANG Daozhuo, LÜ Wentao, et al. Parameter design and optimization of unified power flow controller with fault current limiting[J]. Electric Power Automation Equipment, 2013, 33 (11):160-164.

- [8] WANG H F, JAZAERI M, CAO Y J. Operating modes and control interaction analysis of unified power flow controllers [J]. IEE Proceedings-Generation, Transmission and Distribution, 2005, 152(2): 264-270.
- [9] WANG H F, JAZAERI M, CAO Y J. Analysis of control conflict between UPFC multiple control functions and their interaction indicator[J]. Journal of Control, Automation and Systems, 2005, 3 (2):315-321.
- [10] 邹振宇. 多灵活交流输电控制器间交互影响分析及其协调控制 研究[D]. 杭州:浙江大学,2006.

ZOU Zhenyu. Research on interaction analysis and coordinated control of the multiple FACTS controllers in power system[D]. Hangzhou:Zhejiang University,2006.

[11] 杜文娟,秦川,王海风,等. UPFC 控制的协调设计——变参数开 环解耦控制方法[J]. 电力系统自动化,2008,32(8):19-23.

DU Wenjuan,QIN Chuan,WANG Haifeng, et al. Coordinated design of UPFC-a variable-parameter open-loop decoupling method[J]. Automation of Electric Power Systems,2008,32(8): 19-23.

25-27.

- [12] 段献忠,陈金富,凌煦. 潮流计算中 FACTS 元件模型选择研究
 [J]. 电工技术学报,1999,14(3):65-69.
 DUAN Xianzhong, CHEN Jinfu,LING Xu. Study on models of FACTS devices in power flow calculation [J]. Transactions of China Electrotechnical Society, 1999,14(3):65-69.
- [13] 李虎成,於益军,李峰,等.含UPFC 网络的潮流计算及稳态特性仿真分析[J]. 电网与清洁能源,2013,29(4):1-6.
 LI Hucheng,YU Yijun,LI Feng,et al. Power flow calculation and steady state simulation analysis of power systems with UPFCs[J]. Power System and Clean Energy,2013,29(4):1-6.
- [14] 吴忠强,赵立儒,贾文静,等. 计及 DG 与 STATCOM 的配电网重 构优化策略[J]. 电力自动化设备,2016,36(1):111-116.
 WU Zhongqiang,ZHAO Liru,JIA Wenjing, et al. Optimal reconfiguration of distribution network with DG and STATCOM [J]. Electric Power Automation Equipment,2016,36(1):111-116.
- [15] 万波,张焰. 一种新的 UPFC 潮流计算模型[J]. 电力自动化设备,2003,23(12):25-27.
 WAN Bo,ZHANG Yan. A new UPFC model for power flow analysis[J]. Electric Power Automation Equipment,2003,23(12):
- [16] 程汉湘,聂一雄. 柔性交流输电系统[M]. 北京:机械工业出版 社,2013:187-256.
- [17] 罗承廉, 纪勇, 刘遵义. 静止同步补偿器(STATCOM)的原理与 实现[M]. 北京: 中国电力出版社, 2005: 1-10.
- [18] 徐榕,于泳,杨荣峰,等. 基于无源性理论的 H 桥级联 STATCOM 非线性控制策略[J]. 电力自动化设备,2015,35(1):50-57.
 XU Rong,YU Yong,YANG Rongfeng, et al. Strategy based on passivity theory for online arc ontrol of STATCOM with cascaded H-bridges[J]. Electric Power Automation Equipment, 2015,35(1):50-57.
- [19] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.电能质量电压波动和闪变:GB/T 12326—2008 [S].北京:中国标准出版社,2008.
- [20] 吉蕴,李祖平.逻辑斯谛模型及其应用[J].潍坊学院学报, 2009,9(5):78-80.

JI Yun,LI Zuping. Logistic model and its application[J]. Journal of Weifang University,2009,9(5):78-80.

[21] 何晓群, 闵素芹. 实用回归分析[M]. 北京: 高等教育出版社, 2014:217-239.

作者简介:

马 朋(1990—),女,河北保定人,硕士 研究生,主要研究方向为柔性交流输电与智 能电网(**E-mail**:mapeng@gedi.com.cn);

刘 青(1974—),女,河北石家庄人,副 教授,博士,主要研究方向为电力系统继电 保护、电力系统安全防御与恢复控制;

邹家平(1990—),男,内蒙古赤峰人,助 理工程师,主要从事发电厂自动化设备的维

护管理工作;

刘 诚(1991—),男,内蒙古赤峰人,助理工程师,主要 从事汽轮机辅机设备的维护管理工作。

(下转第 223 页 continued on page 223)

FDS-based assessment of aging degree and moisture content for oil-paper in transformer

LI Chenglin, CAO Baojiang, SUN Jianxiang, LEI Fan, WU Guangning, GAO Bo

(College of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

Abstract: A test platform is established based on the FDS(Frequency domain Dielectric Spectroscopy), the complex permittivity of oil-paper samples with different aging degrees and moisture contents are measured and the results are contrastively analyzed, which show that, the decrease of DP(Degree of Polymerization) of oil-paper makes the real and imaginary parts of its complex permittivity increased in the low-frequency band while basically unchanged in the high-frequency band; the increase of moisture content of oil-paper makes the real part of its complex permittivity increased in the frequency domain lower than 10^2 Hz while the imaginary part increased over the whole frequency domain and the imaginary permittivity as the mapping characteristic parameter of DP to assess the aging degree of oil-paper. The formula of relationship between moisture content and real permittivity is fitted at the characteristic frequency of 10^{-4} Hz for assessing the permittivity of oil-papers with different aging degrees and moisture contents.

Key words: power transformers; oil-paper insulation; aging of material; FDS; polymerization degree; moisture; equivalent decline extent

(上接第 181 页 continued from page 181)

Research on interaction during active power-flow control of UPFC

MA Peng¹, LIU Qing¹, ZOU Jiaping², LIU Cheng³

(1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Source,

North China Electric Power University, Baoding 071003, China; 2. Guohua Yuedian Taishan Power Generation

Company Ltd., Taishan 529228, China; 3. Guohua Huizhou Cogeneration Branch Company of Shenhua

Energy Company Ltd., Huizhou 516082, China)

Abstract: There are interactions among the sub-controllers of UPFC (Unified Power Flow Controller), which may affect its control performance. The effect of the active-power reference change of UPFC on the controlled voltage of its voltage controller is analyzed and the limitation of applying mathematical formula to reflect this effect is expounded. The time-domain simulation with PSCAD/EMTDC is carried out to obtain the dynamic data of voltage, which are used to fit a Logistic model for deducing a mathematical expression to describe the effect of active-power compensation degree on the nodal voltage variation. The deduced expression is then applied to predict the interaction degree according to the active-power compensation degree, which is then used to analyze the effect of UPFC active power-flow control on the operation of its voltage controller at parallel side.

Key words: unified power flow controller; interactions; power-flow control; voltage controller; voltage fluctuation value; Logistic model