61

考虑风电接人的在线风险评估和预防控制

丰 颖,贠志皓,周 琼,孙景文

(山东大学 电网智能化调度与控制教育部重点实验室,山东 济南 250061)

摘要:随着风电渗透率日趋提高,大规模风电的接入对电网静态电压安全的影响也逐渐增强,风电出力分钟 级的显著变化将导致电网运行状态的频繁波动,甚至出现静态电压失稳的可能。为应对该问题,提出考虑大 规模风电接入的在线电网静态电压安全风险指标,并搭建基于此风险指标的预防控制模型以降低系统运行 风险,提高系统稳定运行裕度。IEEE 9 节点系统和 IEEE 39 节点系统验证了所提风险指标和预防控制模型 的有效性。

关键词:风电;风险评估;预防控制;在线计算 中图分类号:TM 614 文献标识码:A

0 引言

风能作为新型的清洁能源,成为世界上很多国家能源战略的发展重心。中国风电装机容量在2014年达到114 GW,排名世界第一位,且计划2020年风电装机容量达到200 GW^[1]。风电的大力发展可以减少温室气体的排放,节约化石能源的消耗,但由于风电出力的不确定性和间歇性,其大规模并网给电网安全运行带来了巨大的挑战^[2-5]。

随着风电并网容量的不断增加,高渗透率下风 电随机性、不可控多出力场景对电网静态电压安全 的影响日趋显著^[4]。文献[7]采用数字仿真方法分 析了风电机组对系统静态电压波动的影响,文献 [8-9]分别采用 PV 曲线和分岔理论研究风电场接 入对电力系统静态电压稳定性的影响,指出高功率 风电注入时系统会发生电压崩溃。2012年,张北风 电基地在无任何系统故障时,电压发生大幅波动导 致风电机组大面积连锁脱网,造成严重经济损失。 理论分析和实际运行情况均表明风电随机波动对电 网静态安全有着不可忽视的影响。然而目前考虑风 电出力随机性的电网静态安全分析方法的研究比较 少,亟需从静态电压安全的角度在线评估风电随机 出力造成的影响。

风险评估方法可考虑电力系统的各种概率不确 定因素,是近期用来研究电力系统静态电压稳定的 热点^[10-11]。文献[12-13]将风电出力分布及各元件 故障作为状态量,运用蒙特卡洛模拟方法评估系统 运行风险,此方法精度与模拟次数成正比,计算量较 大,主要用于日前运行计划的确定。由于风电出力

收稿日期:2016-01-07;修回日期:2016-12-20

基金项目:国家自然科学基金资助项目(51177091);国家电网 公司科技项目(SGSDDK00KJJS1600061)

DOI: 10.16081/j.issn.1006-6047.2017.02.010

分钟级的波动已较为明显,为应对风电出力短期波动 带来的影响,亟需提出在线安全风险评估方法。文 献[14]针对风电场脱网场景,提出了在线评估系统 安全风险的分析方法,风电场在未脱网时的随机出 力也会给系统安全运行带来风险,因此并网风电场 对系统安全运行的影响也需关注。文献[15]提出了 在线风险评估的基础思路,采用预估的运行状态及 相应严重度确定系统短期运行风险,其中运用了连 续潮流方法获得负荷裕度,然而在针对节点数较多 的大电力系统时,连续潮流计算量较大,对在线计算 造成困难。另外,获得系统运行的短期风险信息并 非目的,采取预防控制措施控制电力系统能够在即 将到来的高风险场景下稳定运行才更具现实意义。 目前考虑不确定性因素的预防控制主要针对的是支 路断线故障概率[16-17],而随着风电渗透率的提高,风 电出力随机波动导致的安全问题将日趋显著,但针对 风电出力随机波动的在线预防控制尚缺乏探讨。本 文将风电出力的随机波动作为主要因素进行研究,并 建立相应的预防控制模型以保证系统静态安全稳定。

本文主要分析高渗透率下风电出力波动引起的 静态电压稳定问题。首先提出新的风险指标在线评 估短期风电波动对静态电压稳定的影响,该指标融 合了短期风电预测精度高和戴维南等值算法^[18-19]算 量小的优点,且定义了新的严重度函数对安全域内 不同运行状态进行差异化处理。然后基于风险指标 建立了预防控制模型,提出基于灵敏度的计算方法 线性化约束条件,提高寻优速度,寻找最优控制策略 降低静态电压失稳风险,提高系统稳定运行裕度。 最后采用 IEEE 9 节点系统和 IEEE 39 节点系统仿 真验证了所提风险指标和预防控制模型的有效性。

1 大规模风电并网的电压风险评估

1.1 风险指标定义

风险指标是衡量事件发生概率及后果的综合指

Project supported by the National Natural Science Foundation of China(51177091) and Science and Technology Research Program of SGCC(SGSDDK00KJJS1600061)

数^[20],用于评估对目标的不确定影响。在电力系统 中,学者将风险的概念引入主要用于评估元件在一 定的强迫停运率下系统的运行风险,考虑不确定性 的风险评估方法可以提供更准确的信息,发挥电网 的运行潜力。随着风电渗透率的提高,风电出力的 波动对电网静态安全的影响也日渐显著,甚至会引 起电压失稳^[8-9],因此需要将电网运行风险的概念延 拓到风电出力波动对电网所造成的影响,而不仅仅 研究风机脱网或电网元件出现不确定故障的情形。 因此,本文将风险指标用于评估风电出力波动对电 网静态安全稳定的影响,风险指标的定义如下;

$$I_{\text{Risk}} = \sum_{i=1}^{K} P_{\text{r}}(X_i) \times S_{\text{ev}}(X_i)$$
(1)

其中,K 为不确定场景的总数目;X_i 为第 i 个不确定 场景;P_r(X_i)为第 i 个场景发生的概率;S_{ev}(X_i)为第 i 个场景发生时对应的严重度。式(1)是风险指标的 通用公式,应用到电力系统中,场景概率和严重度可 根据实际需要具备不同的含义。比如场景概率可以 为某元件的故障率,也可以为某事故的发生率;严重 度可以是低电压程度、频率偏移量、支路潮流越限量, 也可以是负荷裕度。本文将关注点放在风电出力波 动对系统静态电压稳定的影响上,下文具体分析的是 上述变量应用到此场景下的定义。

假定当前运行时刻为 t_h ,由于电力系统调度指令 下达的周期为 15 min,15 min 后的时刻为 t_{h+1} 。将 15 min 作为一个计算周期,运用短期风电出力预测 方法分析在 t_{h+1} 时刻风电出力的所有可能状态,令状 态数目为K。将各区间的概率与严重度相乘可得到 对应风电出力状态时的风险值,相加可获得电力系 统的综合风险指标。调度人员不仅可以参考综合风 险指标来衡量系统短期运行风险,也可以单独分析 其中严重度比较大的小概率场景,从源头寻找解决 方案,降低此类小概率事件的发生概率。下文分别 介绍不确定场景发生的概率 $P_r(X_i)$ 和对应的严重度 $S_{er}(X_i)$ 的计算方法。

1.2 $P_r(X_i)$ 的计算

由于风电出力的波动性和间歇性,风电大规模 并网造成电网状态频繁变化,对风电出力进行短期 预测可以提前获知风电随机波动对电网的影响,做 好预防措施应对风电出力随机波动带来的可能后 果。文献[21-23]表明,马尔科夫链模型由于计算简 单快速在短期风电预测中得到了广泛应用,其中文 献[23]提出了基于风电波动的马尔科夫链模型,该 模型统计了各时段风电出力的所有变化,然后细分 状态区间,可以预估每个计算周期内风电出力波动 的区间分布情况,其应用场景与本文相匹配。出于 计算速度和场景匹配两方面的考虑,本文采用文献 [23]所提马尔科夫链模型,下文简述应用此模型计 算 $P_r(X_i)$ 的过程。

假定 2 个相邻的计算时刻为 t_{h-1} 和 t_h , t_h 为当前 时刻, t_{h-1} 为上一时刻,时间间隔为 Δt, 有 $t_h = t_{h-1} + \Delta t$ 。 2 个时刻对应的风电出力分别为 $P_w^{t_{h-1}}$ 和 $P_w^{t_{h}}$,2 个时刻 风电出力变化为 $\Delta P_w^{t_{h}}$, 有 $\Delta P_w^{t_{h}} = P_w^{t_{h-1}}$ 。

令 { $X^{t_a} = \Delta P_{w}^{t_a}(h=2,3,\cdots)$ } 为风电出力变化的随 机过程, $\Delta P_{w}^{t_a}$ 的状态空间为 $I={\Delta P_{w}^{t_a}, \Delta P_{w}^{t_a}, \cdots, \Delta P_{w}^{t_a}}, 其$ $中 <math>\Delta P_{w}^{t_a}(i=1,2,\cdots,K)$ 的上、下限分别为 $\Delta \bar{P}_{w}^{t_a}, \Delta \bar{P}_{w}^{t_a}, \alpha$ 马尔科夫链将来的状态 $X^{t_{a+1}}$ 独立于过去的状态,且 只依赖于现在的状态,故可表达为下式:

 $P = \{X^{t_{h+1}} = \Delta P_{w}^{t_{h+1}} \mid X^{t_{1}} = \Delta P_{w}^{t_{1}}, X^{t_{2}} = \Delta P_{w}^{t_{2}}, \cdots, X^{t_{h}} = \Delta P_{w}^{t_{h}}\} =$

$$\mathbf{P}\{X^{t_{h+1}} = \Delta P_{\mathbf{w}}^{t_{h+1}} | X^{t_h} = \Delta P_{\mathbf{w}}^{t_h}\} \quad \Delta P_{\mathbf{w}}^{t_i} \in I$$

$$(2)$$

定义 **P**为上述马尔科夫过程的状态转移矩阵, 它的元素为 P_{i,j},需满足下式:

$$\begin{cases} P_{i,j} \ge 0 \\ \sum_{j=1}^{K} P_{i,j} = 1 \end{cases} \quad i, j = 1, 2, \cdots, K \tag{3}$$

令矩阵 N 为转移频数矩阵,矩阵中的元素 $N_{i,j}$ 表示从状态 ΔP_w^i 转移到状态 ΔP_w^j 的数目,由于状态空间数目为 K,则矩阵 P 和 N 都为 $K \times K$ 维矩阵,矩阵 P 的元素 $P_{i,j}$ 可由下式计算:

$$P_{i,j} = \frac{N_{i,j}}{\sum_{i=1}^{K} N_{i,j}} \quad i, j = 1, 2, \cdots, K$$
(4)

令 $P_{w^{i}}^{t_{hel}}$ 代表预测的风电场在 t_{h+1} 时刻的出力,是 一个 K 维向量,有 $P_{w^{i}}^{t_{hel}} = [P_{w^{i}}^{t_{hel}}, P_{w^{i}}^{t_{hel}}, \cdots, P_{w^{i}}^{t_{hel}}]$ 。其中元 素 $P_{w^{i}}^{t_{hel}}$ 为对应的区间 $[P_{w^{i}}^{t_{hel}}, \overline{P}_{w^{i}}^{t_{hel}}]$ 的中值,区间上、下限 可由当前状态及状态转移矩阵计算,假设 t_{h+1} 和 t_h 这 2 个时刻风电出力的变化为 ΔP_{w}^{i} ,计算公式如下:

$$\begin{cases} \underline{P}_{w^{i}}^{t_{k+1}} = P_{w}^{t_{k}} + \Delta \underline{P}_{w}^{i} \\ \overline{P}_{w^{i}}^{t_{k+1}} = P_{w}^{t_{k}} + \Delta \overline{P}_{w}^{i} \end{cases} \quad i = 1, 2, \cdots, K \tag{5}$$

通过式(5)得到 t_{h+1} 时刻风电出力的区间分布, 取各区间中值作为该区间的风电出力。对 t_{h+1} 时刻 风电出力 P_{wl}^{t} ,设 t_h 和 t_{h-1} 这 2 个时刻风电出力变化 对应的状态为 $\Delta P_w^{t}(\Delta P_w^{t} \in I)$,则风电出力为 P_{wl}^{t} 对应 的概率为 $P_{rj,i}$,将其作为风险评估中的不确定场景概 率,即:

P_r(X_i)=P_{rj,i} i, j=1,2,...,K (6)
 此概率由基于风电波动的马尔科夫链模型统计
 得到,包含一个计算周期内风电波动的所有情况,反
 映了比较全面的系统短期运行概率信息。

1.3 $S_{ev}(X_i)$ 的计算

通过上述马尔科夫链模型获知风电短期出力分 布的概率信息后,需要对各出力下的系统运行状态 进行分析,反映各出力对应的系统运行状态的指标 称为严重度。在静态电压安全分析中,通常为节点

62

电压设置上、下限约束,如 0.9~1.1 p.u.,以实际电压 越过上、下限约束的程度作为严重度^[14],静态电压稳 定与否与系统负荷裕度息息相关,本文采用静态电 压稳定裕度信息来反映系统运行状态的严重度。连 续潮流(CPF)是一种比较成熟的计算静态电压稳定 裕度的离线方法^[24],采用预测-校正原理按给定负荷 增长方向绘出 *P-U* 曲线,得到系统最小负荷裕度,但 是使用 CPF 在计算过程中需要多步预测-校正,在 针对节点数目较多的电力系统时存在计算量较大的 问题,难以满足在线计算的要求。

随着 PMU 的推广,基于广域量测的戴维南等值 方法仅由单一断面即可计算获得戴维南等值参数, 从而计算静态电压稳定裕度^[19,25],与基于局域量测 戴维南等值方法相比,避免了多潮流断面下系统运 行状态保持不变的合理假设和参数漂移,且计算量 较 CPF 法小,因此本文采用文献[25]所提戴维南等 值参数计算方法,利用系统单个断面的潮流状态计 算负荷节点及风机并网节点的戴维南等值参数,得 到戴维南等值参数后再量化计算系统静态电压稳 定的严重度。对从负荷节点侧看过去两节点戴维南 等值系统,当戴维南等值阻抗和负荷阻抗模值相等 时,系统存在唯一电压解^[26]。应用此原理,可以估计 传递到观察节点的最大功率,从而计算该负荷节点 的负荷裕度 λ_α^[19],公式如下:

$$\lambda_{\rm cr} = \frac{E^2 \left[-P_1 R - Q_1 X + \sqrt{(P_1^2 + Q_1^2)Z^2} \right]}{2(RQ_1 - XP_1)^2} - 1 \qquad (7)$$

其中,*E*、*Z*分别为目标负荷节点的戴维南等值电势、 戴维南等值阻抗;*R*、*X*分别为戴维南等值阻抗*Z*中 的电阻、电抗部分;*P*₁、*Q*₁分别为目标负荷节点的有 功负荷、无功负荷。

在含风电场电力系统中,本文将风电并网节点处理成恒功率因数控制的 PQ 节点^[27],因此式(7)不仅可以计算常规 PQ 节点的负荷裕度,也可以计算风电场并网节点的负荷裕度。假设电力系统共包含 $N \land PQ$ 节点,依次将每个 PQ 节点作为观察节点,可以计算出其负荷裕度为 $\lambda_{cr,m}(m=1,2,\cdots,N)$,选择其中负荷裕度最小值作为系统的负荷裕度 $\lambda_{min}^{[28]}$ 。结合 t_{h+1} 时刻第 i 个区间的风电出力,可得到对应风电出力第 i 个区间时系统的最小负荷裕度 $\lambda_{min,i}$,有:

 $\lambda_{\min,i} = \min \lambda_{\mathrm{cr},m} \quad m = 1, 2, \cdots, N; i = 1, 2, \cdots, K$ (8)

λ_{min,i} 表征整个系统的电压稳定状态,刻画节点运行状态与临界点的"距离"有多"远"。本文将严重 度定义为式(9)。

$$S_{\rm ev}(X_i) = \left(\frac{1}{\lambda_{\min,i}}\right)^2 \tag{9}$$

对于 t_{h+1} 时刻风电出力预测的第 i 个区间,其严 重度与最小负荷裕度成反比,可以突出负荷裕度越 小时严重度越大的趋势,且运行状态距离边界越近时,严重度指数增长,表明场景越严重,相比线性函数更能引起调度人员的注意。

1.4 基于灵敏度的电网状态预估

运用第 1.3 节戴维南等值计算方法计算各风电 出力区间对应的严重度时,需要首先计算电网在 t_{h+1}时刻对应各风电出力区间的系统潮流状态,一 般通过常规潮流迭代计算方法获得,但对复杂大电 力系统,若含风电场数目为 M,每个风电场预估的出 力区间数目为 K,则不确定场景数目为 K^M,对每个 场景进行一次潮流迭代计算,其计算量巨大,无法满 足在线风险评估的计算要求。为减少计算量,本节 介绍基于灵敏度的电网运行状态预估方法。

常规潮流计算迭代公式可简写如下:

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = J \begin{bmatrix} \Delta U \\ \Delta \theta \end{bmatrix}$$
(10)

其中,J为 t_h 时刻电网雅可比矩阵,其本质为电网功 率变化对节点电压状态变化的灵敏度矩阵; $\begin{bmatrix}\Delta P\\\Delta Q\end{bmatrix}$ 为 系统有功和无功的变化向量; $\begin{bmatrix}\Delta U\\\Delta \theta\end{bmatrix}$ 为系统节点电压 幅值和相角的变化向量。

对 t_{h+1} 时刻预测第 i 个风电出力区间的风电出 力波动为 ΔP_{w}^{i} ,风电场按恒功率因数控制无功出力变 化设为 ΔQ_{w}^{i} ,令 $\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix}_{i} = \begin{bmatrix} \Delta P_{ow}^{i} \\ \Delta Q \end{bmatrix}_{i}^{i}$,将式(10)雅可比矩 阵求逆,可得到节点电压向量的变化矩阵,即:

$$\begin{bmatrix} \Delta \boldsymbol{U} \\ \Delta \boldsymbol{\theta} \end{bmatrix}_{i} = \boldsymbol{J}^{-1} \begin{bmatrix} \Delta \boldsymbol{P} \\ \Delta \boldsymbol{Q} \end{bmatrix}_{i}$$
(11)

针对预测的风电出力第*i*个区间,可以得到预估的节点电压向量为:

$$\begin{bmatrix} \boldsymbol{U}'\\ \boldsymbol{\theta}' \end{bmatrix}_{i} = \begin{bmatrix} \boldsymbol{U}_{0}\\ \boldsymbol{\theta}_{0} \end{bmatrix} + \begin{bmatrix} \Delta \boldsymbol{U}\\ \Delta \boldsymbol{\theta} \end{bmatrix}_{i}$$
(12)

其中, $\begin{bmatrix} U_0 \\ \theta_0 \end{bmatrix}$ 为 t_h 时刻系统节点电压幅值和相角向量; $\begin{bmatrix} U' \\ \theta' \end{bmatrix}_i$ 为对应预测的风电出力变化第i个区间的 t_{h+1} 时刻系统节点电压幅值和相角向量。按此方法预估系统运行状态可显著减少风险评估过程的计算量。

2 预防控制模型

第1节提出了新的风险指标评估风电波动对系 统静态电压安全的影响,若所得风险指标超过设定 门槛值,则需采取预防控制措施降低风险指标。预 防控制的传统要求为在潜在故障发生前,在不损失 电源和负荷的前提下,将工作点从稳定域外移至稳 定域内^[29]。对大规模风电并网的电力系统,风电波 动将导致电网运行状态变化,为此本文提出新的预防 控制要求:在不弃风的前提下,采取预防控制确保风 电随机波动导致的电网运行状态变化处于稳定域 内,采取预防控制措施降低短期风电波动引起的运 行风险,将风险指标控制在设定门槛值以下。预防 控制措施发生在扰动到来前,增加了正常运行的费 用,理论上代价大的预防控制系统运行风险较低,如 果追求将安全风险降到最低,耗费过多的经济代价, 这样的预防控制措施毫无经济性可言,并不可取。 因此预防控制提需要兼顾经济性和安全性的寻优问 题,本文从调控的快速性和经济性考虑,调控措施以 调节发电机机端电压为例,建立了配合本文所提风 险指标的预防控制模型如下:

$$\min \sum_{i=1}^{N} C_i \Delta U_{t_h}^i \tag{13}$$

$$\text{t. } \boldsymbol{U}_{\boldsymbol{l}_{h+1}}^{c} = f(\Delta \boldsymbol{U}_{\boldsymbol{l}_{h}})$$
 (14)

$$I_{\text{Risk}} = g(\Delta U_{t_h}) \tag{15}$$

$$0 \leqslant I_{\text{Risk}} \leqslant \overline{I}_{\text{Risk}} \tag{16}$$

$$\Delta U_{t_h}^{\min} \leq \Delta U_{t_h} \leq \Delta U_{t_h}^{\max}$$
(17)

$$\boldsymbol{U}_{l_{h+1},\min}^{c} \leq \boldsymbol{U}_{l_{h+1}}^{c} \leq \boldsymbol{U}_{l_{h+1},\max}^{c}$$
(18)

其中, ΔU_{h}^{i} 为 t_{h} 时刻第i个 PV 节点电压调节量; $N_{\rm PV}$ 为 PV 节点数目; C_i 为对应 i 节点的调节经济代 价系数,为便于计算,本文将其假设为1; $f(\Delta U_{h})$ 为 t_{h} 时刻调压措施 ΔU_{t} 与 t_{h+1} 时刻各节点电压 U_{h-1}^{e} 的函 数关系,为降低计算量,此函数关系也可用灵敏度进 行推导从而避免潮流迭代计算,此部分推导将在下 文详述; $g(\Delta U_{\mu})$ 为调压措施 ΔU_{μ} 与风险指标 I_{Bisk} 之 间的函数关系; $\overline{I}_{\text{Risk}}$ 为风险指标上限; $\Delta U_{L}^{\text{max}}$ 、 $\Delta U_{L}^{\text{min}}$ 分 别为 PV 节点调压能力上、下限; $U_{h_{sl}}^{e}$, $U_{h_{sl}}^{e}$,分别 为调压后节点电压幅值上、下限。预防控制模型以 t_h 时刻各 PV 节点调压代价最小为目标函数,如式 (13) 所示;式(16) 为风险指标的上、下限约束;式 (17)为t_h时刻具备调压能力的各 PV 节点调节能力 上、下限约束:式(18)为调压后各节点电压幅值的 上、下限约束。本文采用内点法求解此模型,此模型 目标函数与约束条件都为线性关系,求解速度较非 线性模型快,可满足在线计算的要求。

式(14)的详细函数关系推导如下。对式(10) 全微分,可得下式:

$$\frac{\partial \Delta P}{\partial \theta} \Delta \theta + \frac{\partial \Delta P}{\partial U_{PQ}} \Delta U_{PQ} + \frac{\partial \Delta P}{\partial U_{PV}} \Delta U_{PV} = \Delta P$$

$$\frac{\partial \Delta Q}{\partial \theta} \Delta \theta + \frac{\partial \Delta Q}{\partial U_{PQ}} \Delta U_{PQ} + \frac{\partial \Delta Q}{\partial U_{PV}} \Delta U_{PV} = \Delta Q$$
(19)

其中,下标 PV 和 PQ 分别表示 PV 节点和 PQ 节点, 调节 PV 节点的电压将不影响 PQ 节点的有功功率 和无功功率,也不影响 PV 节点的有功功率,故式(19) 等号右侧为0向量,对上式变形可得到如下矩阵形式:

$$\begin{bmatrix} \Delta \boldsymbol{\theta} \\ \Delta \boldsymbol{U}_{PQ} / \boldsymbol{U}_{PQ} \end{bmatrix} = -\begin{bmatrix} \frac{\partial \Delta \boldsymbol{P}}{\partial \boldsymbol{\theta}} & \frac{\partial \Delta \boldsymbol{P}}{\partial \boldsymbol{U}_{PQ}} \boldsymbol{U}_{PQ} \\ \frac{\partial \Delta \boldsymbol{Q}}{\partial \boldsymbol{\theta}} & \frac{\partial \Delta \boldsymbol{Q}}{\partial \boldsymbol{U}_{PQ}} \boldsymbol{U}_{PQ} \end{bmatrix}^{-1} \begin{bmatrix} \frac{\partial \Delta \boldsymbol{P}}{\partial \boldsymbol{U}_{PV}} \boldsymbol{U}_{PV} \\ \frac{\partial \Delta \boldsymbol{Q}}{\partial \boldsymbol{U}_{PV}} \boldsymbol{U}_{PV} \end{bmatrix} \times$$

式(20)即为式(14)的详细函数关系,通过利用 灵敏度求解调节措施与系统状态的关系,可避免潮 流迭代产生的计算量,节省计算时间,以实现风险评 估和预防控制的在线应用。

3 风险评估与预防控制流程

上文分别介绍了风险指标的计算和预防控制模型的建立,本节介绍将两块内容结合在一起进行在 线风险评估的流程,以实现在线评估由风电波动造 成的静态电压稳定风险,并寻优预防控制措施降低 超过门槛值的风险。在线风险评估及预防控制系统 流程图见图 1,滚动执行可实现对系统静态电压安 全风险的在线监测和控制。

图 1 在线风险评估流程图 Fig.1 Flowchart of online risk assessment

4 算例分析

4.1 IEEE 9 节点系统仿真

本文采用 PSAT 工具进行仿真分析。首先采用 IEEE 9 节点系统验证所提风险指标计算的有效性, IEEE 9 节点系统单线图如图 2 所示,将母线 2 由 PV 节点更改为风电场并入节点,风电场的历史运行数据 由位于山东省济南市的一个风电场提供,时间跨度 为 2012 年 1 月 1 日至 2014 年 12 月 31 日,采样间

图 2 IEEE 9 节点系统单线图 Fig.2 IEEE 9-bus system

隔为 15 min。

将该系统整体负荷水平提升到初始值的 1.3 倍,风电的渗透率设为 30%,风电场按 PQ 节点处 理,采用恒功率因数 0.96 控制。将风电场的历史数 据按照第 1.2 节介绍方法转化为马尔科夫链模型, 经过统计计算,可以获得时间间隔为 15 min 的各时 刻风电出力预测值、概率、严重度和风险指标。取 2015 年 1 月 1 日前 16 个时刻进行分析,执行前述 风险指标计算流程,可获得 30% 风电渗透率下 2015 年 1 月 1 日前 4 h 的风险指标见图 3。

图 3 风电 30% 渗透率下风险指标在线值 Fig.3 Values of risk index at 30% windpower penetration rate

由图 3 可看出,30% 风电渗透率下,这 16 个时刻 风险指标的波动较为平缓,以 2015 年 1 月 1 日 00:30 为例,结果见表 1,表中出力为标幺值,后同。

表1 风电 30% 渗透率下出力预测在线值及相应风险
Table 1 Predicted wind-power outputs and corresponding
risks at 30% wind-power penetration rate

	at 50% wind p	ower penetidu	on nuto
出力	出力概率	严重度	风险指标
1.0493	0.2308	3.4341	0.792 50
1.1005	0.3846	3.3573	1.291 30
1.1517	0.2308	3.2780	0.75650
1.2029	0.0769	3.1964	0.245 90
1.2285	0.0769	3.1548	0.24267
合计	1.0000		3.328 80

从表1可看出,各区间的严重度都较小,且该渗透率下系统运行状态具备较高的负荷裕度,风险指标良好,无需进行预防控制。而随着风电的发展,风电渗透率有所提高,风电渗透率达到50%时,可得到不同于图3结果的风险指标,见图4。

图 4 的风险指标均方差为 21.8549, 而图 3 均方 差为 0.0451, 因此高渗透率下风电随机波动将导致

图 4 风电 50% 渗透率下风险指标在线值 Fig.4 Values of risk index at 50% wind-power penetration rate

风险指标的变化更剧烈,其中第2个时刻的风险指标最高,其结果见表2。

表 2	风电	50 %	渗透率	下出:	力预测在	线值	直及相应	立风险
[able]	2 Pre	dicted	wind-r	ower	outputs	and	corres	ponding

risks at 50% wind-power penetration rate

出力	出力概率	严重度	风险指标	
1.7391	0.2308	78.9737	18.2247	
1.8239	0.3846	92.0682	35.4109	
1.9088	0.2308	102.2470	23.5995	
1.9936	0.0769	107.9130	8.3010	
2.0360	0.0769	108.7875	8.3683	
合计	1.0000		93.9003	

表 2 中,风电出力各区间严重度数值相比表 1 高,风险指标也较表 1 高,表 2 数据表明 50% 风电 渗透率下系统运行状态距离静态电压稳定边界比较 接近,系统运行裕度较小,再受到扰动有可能导致发 生电压崩溃现象,此时的运行状况比较恶劣,需采取 预防控制措施进行调控。

经过分析图 4 中 16 个时刻的风险指标,第6个时刻风险指标为 10.1067,处在该风险指标及以下时 系统运行状态良好,且距离稳定边界有较高的负荷 裕度,本算例选择第6个时刻的风险指标作为风险 门槛值,在图 4 中用虚线表示,对超过虚线的风险指 标进行预防控制,控制前后的风险指标对比结果见 图 5,预防控制所耗费经济代价见图 6。本算例所设 风险指标门槛值的方法仅为一个参考,在工程应用 时,需根据系统运行实际状态、计算误差等多因素 综合确定出风险门槛值。

通过比较,预防控制后的风险指标均较控制前 风险指标低,除第2个时刻的风险指标外,均降到了

门槛值以下,证明了预防控制措施的有效性。第2 个时刻未降到门槛值以下是由于本系统 PV 调节节 点的电压调节能力已达上限,需采取其他措施进一 步降低风险指标,本文在此不做讨论。另外,通过图 5 和图 6 的对比,可发现预防控制代价的大小与预防 控制前风险指标大小正相关,即风险指标降低越多, 预防控制所需要的代价越大。系统在运行时需要综 合衡量安全风险与控制代价,设置合理的风险门槛 值,保证系统运行的安全性和经济性。

4.2 IEEE 39 节点系统仿真

60

上文使用 IEEE 9 节点系统验证了所提风险指标和预防控制模型的有效性,但由于算例简单、计算量小,无法凸显出所使用的基于灵敏度的方法在计算速度上的优势,本节使用 IEEE 39 节点系统再次进行验证。IEEE 39 节点系统单线图见图 7,将原 PQ 节点 12、18、26 更改为风电场,这 3 个风电场运行数据仍用前述的山东风电场数据,即 3 个风电场运行数据仍用前述的山东风电场数据,即 3 个风电场运行状态的变化一样,仅出力大小比例不同。3 个风电场出力所占比例分别为 18%、42%、40%,将系统负荷水平设置为初始值的 1.1 倍,带来的不平衡出力由所有发电机按当前有功出力的比例共同承担。设置 3 个风电场出力总渗透率分别为 25% 和 44.1%,计算2015 年 1 月 1 日前 4 h 共 16 个时刻的风险指标,比较高渗透率和低渗透率下的结果,见图 8 和图 9。

图 8 为低渗透率 25%时系统 4 h 的风险指标 图,图 9 为高渗透率 44.1%时系统 4 h 的风险指标 图。图 8 中 16 个风险指标的均方差为 0.0229,图 9 中 16 个风险指标的均方差为 11.7095,因此高渗透 率下风电出力随机波动范围变大,所引起的风险指标 波动也更为剧烈。通过分析图 9 各风险指标,第6个 时刻的风险值为 3.3517,处在该风险指标及以下时系 统运行状态较好,有较高负荷裕度,选择此风险作为风 险指标门槛值,在图 9 中用虚线表示,对超过虚线的风 险指标进行预防控制,控制前后的风险指标对比结果 见图 10,预防控制所耗费经济代价见图 11。

通过比较,预防控制后的风险指标均较控制前 风险指标低,降到了门槛值以下,证明了预防控制措 施的有效性。通过图 10 和图 11 的对比可发现,预 防控制代价的大小基本与预防控制前风险指标大小 正相关,即风险指标降低越多,预防控制所需要的代 价越大,系统在运行时需要综合衡量风险与控制代 价,设置合理的风险门槛值,保证系统运行的安全性 和经济性。

本算例中各风险指标的计算采用了基于灵敏度 的方法,平均耗时6s,而若采用潮流迭代的方法计 算平均耗时28s。在使用内点法对预防控制进行寻 优计算中,计算量与所预估的风电随机出力区间数 目关联紧密,经过统计观察,基于马尔科夫链模型的 风电随机出力有效区间数目主要为3和4,采用本 文所提基于灵敏度的预防控制模型计算平均耗时 120s,而使用潮流迭代方法平均耗时1024s,可见 从计算速度的角度,本文所提方法在风险评估和预 防控制方面更适用于在线决策。

5 结论

本文延拓风险和预防控制的传统定义,提出新 的风险指标在线评估由风电波动引起静态电压风 险,并构建新预防控制模型寻求最优预防控制降低 系统在线运行风险,分别用 IEEE 9 节点系统和 IEEE 39 节点系统验证了所提风险指标和预防控制 模型的有效性。本文所提在线风险评估系统可同目 前存在日前调度系统互为补充,为电网安全运行做 出贡献。

风险问题的在线评估关键是计算速度和精度的 博弈问题,本文所提方法是基于灵敏度的计算会大 幅提高计算量,牺牲了一部分精度,在针对复杂场景 时,计算速度仍显不足,计算主要耗时在预防控制 模型的寻优过程。因此,如何简化复杂场景,进一步 寻找求解预防控制模型的方法来提升计算速度和计 算精度将是后续研究的重点。

参考文献:

- [1] 中国可再生能源学会风能专业委员会. 2014 年中国风电装机容量统计[J]. 风能,2015(2):36-49.
- [2] ERIKSEN P B, ACKERMANN T, ABILDGAARD H, et al. System operation with high wind penetration [J]. IEEE Power & Energy Magazine, 2005, 3(6):65-74.
- [3] 黄学良,刘志仁,祝瑞金,等.大容量变速恒频风电机组接入对电 网运行的影响分析[J].电工技术学报,2010,25(4):142-149.
 HUANG Xueliang,LIU Zhiren,ZHU Ruijin,et al. Impact of power system integrated with large capacity of variable speed constant frequency wind turbines [J]. Transactions of China Electrotechnical Society,2010,25(4):142-149.
- [4] 李茜,刘天琪,何川,等. 含风电系统的有功和备用协调优化方法

[J]. 电力自动化设备,2016,36(7):7-14.

LI Qian, LIU Tianqi, HE Chuan, et al. Coordinated optimization of active power and reserve capacity for power grid with wind farm[J]. Electric Power Automation Equipment, 2016, 36(7):7-14.

- [5] 谢俊,王璐,傅旭华,等.考虑风电功率概率分布不确定性的含风 电配电网无功规划方法[J]. 电力自动化设备,2016,36(6):40-47. XIE Jun,WANG Lu,FU Xuhua,et al. Reactive power planning with consideration of wind power probability distribution uncertainty for distribution network[J]. Electric Power Automation Equipment,2016,36(6):40-47.
- [6] 朱星阳,刘文霞,张建华,等. 电力系统随机潮流及其安全评估应用研究综述[J]. 电工技术学报,2013,28(10):257-270. ZHU Xingyang,LIU Wenxia,ZHANG Jianhua, et al. Reviews on power system stochastic load flow and its applications in safety evaluation[J]. Transactions of China Electrotechnical Society,2013, 28(10):257-270.
- [7] PAPADOPOULOS M, MALATESTAS P, HATZIARGYRIOU N. Simulation and analysis of small and medium size power systems containing wind turbines[J]. IEEE Transactions on Power Systems, 1991, 6(4): 1453-1458.
- [8]张义斌,王伟胜,戴慧珠. 基于 P-V 曲线的风电场接入系统稳态 分析[J]. 电网技术,2004,28(23):61-65.
 ZHANG Yibin,WANG Weisheng,DAI Huizhu. P-V curve based static analysis for integration of wind farm into power system
 [J]. Power System Technology,2004,28(23):61-65.
- [9] 马幼捷,张继东,周雪松,等. 基于分岔理论的含风电场电力系统 静态电压稳定问题研究[J]. 电网技术,2008,32(9):74-79.
 MA Youjie,ZHANG Jidong,ZHOU Xuesong,et al. Study on steady state voltage stability of power system containing wind farm based on bifurcation theory[J]. Power System Technology, 2008,32(9):74-79.
- [10] WAN H,MCCALLEY J D,VITTAL V. Risk based voltage security assessment[J]. IEEE Transactions on Power Systems, 2000,15(4):1247-1254.
- [11] 余娟,李文元,颜伟. 静态电压稳定风险评估[J]. 中国电机工程 学报,2009,29(28):40-46.
 YU Juan,LI Wenyuan,YAN Wei. Risk assessment of static voltage stability[J]. Proceedings of the CSEE,2009,29(28): 40-46.
- [12] PAPAEFTHYMIOU G, VERBOOMEN J, SCHAVEMAKER P H, et al. Impact of stochastic generation in power systems contingency analysis[C]//International Conference on Probabilistic Methods Applied to Power Systems. [S.I.]:IEEE, 2006:397-406.
- [13] CHENG J,LIU W,ZHANG J,et al. Risk assessment of generation and transmission systems considering wind power penetration[J]. Transactions of China Electrotechnical Society, 2014,29(2):260-270.
- [14] CHEN Q,LITTLER T,HAN S,et al. Risk assessment model for wind generator tripping off[J]. Proceedings of the CSEE,2015, 35(3):576-582.
- [15] NI M,MCCALLEY J D,VITTAL V,et al. Online risk-based security assessment [J]. IEEE Transactions on Power Systems, 2003,18(1):258-265.
- [16] 傅旭. 考虑不确定因素的电力系统静态安全预防控制[J]. 电力 自动化设备,2014,34(2):120-124.

FU Xu. Static security preventive control considering uncer-

第 37 卷

tainty factors for power system [J]. Electric Power Automation Equipment, 2014, 34(2): 120-124.

[17] 户秀琼,颜伟,余娟,等. 静态电压稳定预防控制的风险评估[J]. 电力自动化设备,2014,34(8):65-70.
HU Xiuqiong,YAN Wei,YU Juan, et al. Risk assessment for preventive control of static voltage stability[J]. Electric Power

Automation Equipment, 2014, 34(8):65-70.

- [18] 刘明松,张伯明,姚良忠,等. 基于 PMU 和改进戴维南等值模型的电压稳定在线监视[J]. 电力系统自动化,2009,33(10):6-10. LIU Mingsong,ZHANG Boming,YAO Liangzhong, et al. On-line voltage stability monitoring based on PMU and improved Thevenin equivalent model[J]. Automation of Electric Power Systems,2009,33(10):6-10.
- [19] LIU J H,CHU C C. Wide-area measurement-based voltage stability indicators by modified coupled single-port models [J]. IEEE Transactions on Power Systems, 2014, 29(2):756-764.
- [20] 李文沅,周家启,卢继平,等. 电力系统风险评估模型、方法和应用[M]. 北京:科学出版社,2006.
- [21] SHAMSHAD A, BAWADI M A, HUSSIN W M A W, et al. First and second order Markov chain models for synthetic generation of wind speed time series [J]. Energy, 2005, 30(5): 693-708.
- [22] 周封,金丽斯,刘健,等. 基于多状态空间混合 Markov 链的风电 功率概率预测[J]. 电力系统自动化,2012,36(6):29-33.
 ZHOU Feng,JIN Lisi,LIU Jian, et al. Probabilistic wind power

forecasting based on multi-state space and hybrid Markov chain models[J]. Automation of Electric Power Systems, 2012, 36 (6):29-33.

- [23] SUN J,YUN Z,LIANG J,et al. Wind power forecasting based on a Markov chain model of variation [C] // International Conference on Fuzzy Systems and Knowledge Discovery. [S.I.]: IEEE, 2015:778-782.
- [24] 伍利,古婷婷,姚李孝. 基于改进连续潮流法的静态电压稳定分析[J]. 电网技术,2011,35(10):99-103.
 WU Li,GU Tingting,YAO Lixiao. Static voltage stability analysis based on improved continuation power flow[J]. Power System Technology,2011,35(10):99-103.
- [25] WANG Y, PORDANJANI I R, LI W, et al. Voltage stability

monitoring based on the concept of coupled single-port circuit [C]//Power and Energy Society General Meeting, 2012. [S.l.]: IEEE, 2012:1.

- [26] VU K, BEGOVIC M M, NOVOSEL D, et al. Use of local measurements to estimate voltage-stability margin[J]. IEEE Transactions on Power Systems, 1999, 14(3): 1029-1035.
- [27] 张元,郝丽丽,戴嘉祺.风电场等值建模研究综述[J].电力系统保护与控制,2015,43(6):138-146.
 ZHANG Yuan,HAO Lili,DAI Jiaqi. Overview of the equivalent model research for wind farms[J]. Power System Protection & Control,2015,43(6):138-146.
- [28] 李连伟,吴政球,钟浩,等. 基于节点戴维南等值的静态电压稳 定裕度快速求解[J]. 中国电机工程学报,2010,30(4):79-83.
 LI Lianwei,WU Zhengqiu,ZHONG Hao,et al. Fast estimation method for steady-state voltage stability margin based on node Thevenin equivalent[J]. Proceedings of the CSEE,2010,30(4): 79-83.
- [29] 方勇杰,鲍颜红,徐伟,等. 电力系统安全稳定预防控制在线计 算方法的评述[J]. 电力系统自动化,2015,39(11):199-207.
 FANG Yongjie,BAO Yanhong,XU Wei,et al. A review of online calculation methods of preventive control for power system security and stability[J]. Automation of Electric Power Systems, 2015,39(11):199-207.

作者简介:

丰 颖

丰 颖(1990—),男,河南濮阳人,硕士 研究生,主要研究方向为电力系统运行与 控制(**E-mail**:xingyingliu@163.com);

周 琼(1990—),女,陕西汉中人,硕士

研究生,主要研究方向为电力系统运行与控

制(E-mail:aldercy@qq.com);

孙景文(1990—),女,山东聊城人,硕士研究生,主要研 究方向为电力系统运行与控制(E-mail:619771431@qq.com)。

Online risk assessment and preventive control considering wind-power integration

FENG Ying, YUN Zhihao, ZHOU Qiong, SUN Jingwen

(Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education,

Shandong University, Ji'nan 250061, China)

Abstract: The impact of large-scale wind-power integration on the static voltage security of power system increases along with the increase of wind-power penetration rate, and the significant minute-level change of wind power often causes the operational state fluctuation of power system, even the static voltage instability, aiming at which, an online risk index of power-system static voltage security is proposed with the consideration of large-scale wind-power integration. A preventive control model based on this index is built to reduce the risk of system operation and improve the margin of stable system operation. IEEE 9-bus system and IEEE 39-bus system are applied to verify the effectiveness of the proposed risk index and preventive control model.

Key words: wind power; risk assessment; preventive control; online computation

63