新型动态电压恢复器对短路故障电流主动调节的研究

姜 飞1,涂春鸣2,熊龙珠3,郭 祺2,吴连贵2

(1. 长沙理工大学 电气与信息工程学院,湖南 长沙 410004;

2. 湖南大学 国家电能变换与控制工程技术研究中心,湖南 长沙 410082;

3. 国网张家界供电局,湖南 张家界 427000)

摘要:提出在动态电压恢复器(DVR)系统的串联逆变器交流输出端增设反并联晶闸管支路的拓扑,以实现 动态电压补偿功能与故障电流限制功能。分析所提拓扑的故障电流限制功能机理,建立其运行数学模型; 在限流功能动态过程分析基础上,提出一种通过调整晶闸管触发相位角的故障电流调节方法,给出限流阻 抗的调节范围,从而解决限流阻抗与电网原有过流保护的配合问题;最后,采用 PSCAD/EMTDC 仿真软件 和实验室样机、验证所提拓扑及控制方法的正确性。

关键词:动态电压恢复器;故障限流;滤波器;多功能;主动调节

中图分类号: TM 761 文献标识码: A

DOI: 10.16081/j.issn.1006-6047.2017.09.019

0 引言

目前,应用于工业生产、居民生活的敏感性负载 使得电力用户对电能质量的要求越来越高^[1]。在 6~ 35 kV 配电网中选取带敏感负荷较多的馈线,利用 动态电压恢复器 DVR(Dynamic Voltage Restorer)对 某区域内的 1 条或数条馈线同时进行电能质量治 理,是一种经济可行的方案^[2-5]。然而,当馈线负载侧 发生短路故障时,急剧增大的故障电流会对 DVR 系 统中的功率器件、直流侧电容等造成严重危害^[6]。

传统电网采用结构优化、设备更新、运行方式改 变等方法限制短路故障电流,但在实际中应用复 杂、投资成本较大^[7-8]。在 DVR 系统中采用增设旁路 开关(机械开关或电力电子开关)的方法,不仅可以 保护 DVR 免受故障大电流的危害,而且能够在电网 正常运行时减少系统损耗^[9],但此方法不能有效限 制急剧增大的短路故障电流,无法消除故障电流对 输电线路中其他设备的影响。较常用的限流方法是 在输电线路上串联故障限流器,从而限制故障大电流, 故障限流器包括谐振型限流器^[10]、固态限流器^[6]、超 导限流器^[11]和永磁饱和型限流器^[12-13]等,但额外安 装限流装置势必会增加电网建设及运维成本。

负载侧发生短路故障时,可通过 DVR 快速注入 可控电压分量从而限流^[14-15],但该方法要求 DVR 有 较大的有功注入能力。文献[16]提出在串联变压器 二次侧分别并联变阻器和晶闸管 2 条支路从而保护 电压型逆变器,然而新增支路复杂、控制难度大^[17]。

此外,为解决故障限流器利用率低下、功能单一的问题,文献[18-19]提出了一种多功能固态限流器

收稿日期:2016-09-08;修回日期:2017-04-17

基金项目:国家自然科学基金资助项目(51377051)

Project supported by the National Natural Science Foundation of China(51377051)

的拓扑,其能够实现短路电流限制与电能质量调节 的功能,为电网短路故障下的 DVR 过电流保护提供 帮助。文献[20]对新型 DVR 的模式切换时序进行 了研究,指出在断路器切除故障点前,所提拓扑能够 将故障电流限制在合理范围内。但是,考虑到配电网 中故障点、故障类型(金属性接地、非金属性接地等) 均无法确定,检测到故障发生后立即投入不可调节 的限流阻抗,可能造成 2 个方面的后果:故障电流被 限制后其值过小,将造成电网过电流保护失效,故障 无法被断路器正确切除;故障电流被限制后其值仍 过大,不利于降低断路器的遮断容量,且无法实现保 护电网中设备的目的。因此结合工程实际,研究通过 对限流阻抗的可调控制以实现故障电流的主动调节 十分必要。

本文在已有研究的基础上,提出一种通过控制反 并联晶闸管通断以实现多功能的新型 DVR;着重分 析新拓扑下实现短路故障电流限制功能的机理及数 学模型,给出限流功能的动态过程;提出设置晶闸管 触发相位角的故障电流调节方法,并分析限流阻抗的 调节范围;最后,在 PSCAD/EMTDC 仿真软件和实验 室样机平台上验证所提方法的正确性。

1 新型 DVR 运行机理

新型 DVR 采用三单相拓扑,每相控制策略完全 相同,其单相拓扑如图 1 所示。图中, U_s 为系统电压; U_L 为负载电压; Z_s 为系统阻抗; Z_{Line} 为输电线路阻 抗; Z_{Load} 为负载阻抗;k 为串联变压器的一、二次侧电 压比; L_f 为 LC 输出滤波器的滤波电感; C_f 为滤波电 容; i_{Cf} 为滤波电容上流通的基波电流; i_f 为滤波电感 上流通的基波电流; I_L 为线路电流; U_c 为滤波电容两 端电压; U_{dar} 为串联变压器两端输出电压; U_i 为串联 变流器交流端输出电压; C_{dac} 为直流侧电容。新型的

139

图 1 新型 DVR 单相拓扑 Fig.1 Single-phase topology of modified DVR

DVR 中主要包括:PWM 整流器、串联变流器、串联 变压器 T₁、LC 滤波器和反并联晶闸管支路等。PWM 整流器可并联接在线路电源侧或通过外部交流电源 供电的方式为直流侧提供能量^[18,21];串联变流器通 过 T₁ 接入输电线路;LC 输出滤波器滤除绝缘栅双极 晶体管 IGBT(Insulated Gate Bipolar Transistor)产生 的高次谐波。

新型 DVR 具有传统动态电压补偿功能^[1-3],其 优势还在于:当负载侧发生不同类型短路故障时, 具备故障电流限制功能,能够实现自我保护。其控 制过程为:当检测到故障相电流超过继电保护阈值 时^[18-20],闭锁故障相 IGBT 触发脉冲,退出串联变流 器,延迟导通反并联晶闸管,使得输出滤波电感短接 至 T_1 的二次侧,从而实现故障限流。忽略滤波电容 C_f 流过的基波电流,则 T_1 二次侧电流流通回路为: 串联变压器二次侧绕组→滤波电感 L_f →晶闸管支 路→串联变压器二次侧绕组。当电网短路故障被清 除时,首先关断晶闸管支路,然后触发 IGBT 导通,恢 复电压调节功能。

1.1 限流功能数学模型

由于传统 DVR 的电压补偿策略已有学者进行 了深入的研究,其参数设计方法较为成熟^[1-2],因此, 下文研究重点为故障电流调节方法,本文所提拓扑 在限流模式下的等效电路如图 2 所示。图中,Z_o为等 效至串联变压器一次侧的阻抗;R₁、R₂和 L_{o1}、L_{o2}分 别为一次、二次侧绕组的电阻和漏感。

图 2 限流模式下的等效电路

Fig.2 Equivalent circuit in current-limiting mode

若串联变压器 T₁ 未发生铁芯饱和现象,其励磁 阻抗 Z_m 很大;且滤波电容 C_f 的基波阻抗较大,则流 过滤波电容 C_f 上的基波电流 i_{ci} 很小。因此,可忽略 二者的影响,将LC输出滤波器与串联变压器看作限 流阻抗 Z_{im},表示为:

$$Z_{\rm lim} = k^2 \omega L_{\rm f} \tag{1}$$

其中,ω为基波角频率。若故障发生在线路首端,计 及串联变压器等效阻抗及电源侧等效阻抗的影响, 则故障短路电流被限制为:

$$I_{\rm L} \approx \frac{U_{\rm S}}{k^2 \omega L_{\rm f} + Z_{\rm S} + Z_{\sigma}} \tag{2}$$

1.2 限流动态过程分析

检测到负载侧发生短路 故障后,新型 DVR 能够迅速 隔离串联变流器与故障大电 流,并将限流模块串入输电线 路,实现对短路故障电流的限 制,尽可能减轻或消除故障电 流对设备的危害。新型 DVR 的故障限流功能实现时序如 图 3 所示。

图 3 中,时刻 t₁负载侧某 ^{nunction} 处发生短路故障;时刻 t₂控制模块检测到故障发生, 并发出指令闭锁故障相 IGBT;考虑实际中 IGBT 关 断时间存在延时,在时刻 t₃才能完全关断;此外,为 确保 IGBT 关断的可靠性,延迟至时刻 t₄给出晶闸管 触发信号,晶闸管在时刻 t₅完成导通,系统进入限 流模式。此过程的数学描述如下。

a. 假设故障发生时刻 t_1 至 IGBT 完全关断时刻 t_3 的时长为 Δt_1 ,此时间段内的故障电流大小为:

$$I_{\Delta t_1} \approx \frac{U_{\rm S}}{Z_{\rm S} + Z_{\sigma}} \tag{3}$$

由于 Z_{σ} 、 Z_{s} 值较小,逐步增大的故障电流将耦合 至串联变压器二次侧,仍将流过功率器件,故应当尽 量缩短此时间段,但 Δt_{1} 时间段的长短主要取决于故 障检测时间及器件反应时间。

b. 假设时刻 t_3 至晶闸管完全导通时刻 t_5 的时长 为 Δ t_2 ,此时间段内的等效电路如图 4 所示。忽略串 联变压器漏感和绕组电阻,则施加在串联变压器两 端的电压可等效为电源电压 U_{so} 由于励磁阻抗 Z_m 很 大,且 1/(j ω C_f)很大,因此, $I_{\Delta t_2}$ 远小于 $I_{\Delta t_1}$,为:

图 4 Δt_2 时段等效电路 Fig.4 Equivalent circuit of period Δt_2

因此,在 Δt_2 时间段内,IGBT完全关断,功率器 件与短路故障大电流已隔离。由式(4)可知,受串联 变压器励磁阻抗和滤波电容基波阻抗的影响,故障 电流被限制得过小,将影响输电线路过电流保护动 作,可通过导通晶闸管支路对限流程度进行调整。

c. 晶闸管在时刻 t₅ 导通后进入故障电流调节模式。由式(2)可知,此时线路电流 I_L 主要取决于限流等效阻抗的大小。因此,根据系统原有继电保护整定值要求,可通过设置反并联晶闸管触发角大小来调节限流程度。

2 故障电流调节技术

由上文分析可知,新型 DVR 在时刻 t₅后,其调 控模式相当于通过反并联晶闸管控制滤波电感支 路,限流模块等效电路如图 5 所示。图中,u₁₂ 为串联 变压器二次侧电压。因此,通过控制晶闸管的触发相 位角,可调整每个周期内滤波电感 L_f串联接入系统 的时间长短,且并联支路可看作为可调电感 L_{mo}

图 5 调控模式下限流模块等效电路 Fig.5 Equivalent circuit of current-limiting module in adjustment mode

2.1 触发相位分析

当新型 DVR 运行在限流模式时,串联变压器 T₁的二次侧电压近似为 U_s/k,有:

 $L_{\rm f} di_{\rm T2} / dt = u_{\rm T2} \approx U_{\rm S} / k \tag{5}$ 其中, $i_{\rm T2}$ 为滤波电感端流通电流。

若 u_{12} 处于正半波,晶闸管在 $\omega t = \alpha(\alpha)$ 为触发相 位,此处 $\alpha \in [0, \pi]$)时刻正向导通,电流 i_{12} 逐渐增 大,在 $\omega t = \pi(u_{12}$ 正向过零)时刻, i_{12} 达到峰值。根据 对称性,晶闸管关断时刻为 $\omega t = 2\pi - \alpha$;当 u_{12} 处于负 半波时,另一个晶闸管在 $\omega t = \pi + \alpha$ 时刻导通,关断时 刻为 $\omega t = 3\pi - \alpha$ 。图 6 描述了晶闸管关断相位 $2\pi - \alpha$ 与另一晶闸管触发脉冲相位 $\pi + \alpha$ 之间的关系,二 者之间的关系对故障期间线路电流基波有效值有 重要影响。

a. 当 $2\pi - \alpha < \pi + \alpha$, 即 $\alpha \in (\pi/2, \pi]$ 时, 波形如 图 6(a)所示。当已导通晶闸管的电流过零时刻早于 未导通晶闸管触发脉冲时, 电流为断续。分析可知, 当触发相位 α 从 $\pi/2$ 持续增大, 导通角 $\beta(\beta = \pi - \alpha)$ 从 $\pi/2$ 下降, 在一个周期内电流将发生断续; 当触 发相位 $\alpha = \pi$ 时, 晶闸管导通区间宽度为 0, 2 个晶 闸管在任何时刻均处于截止状态, 此时限流模块的 电抗器退出运行。

图 6 限流模块的电压和电流波形图 Fig.6 Voltage and current waveforms of current-limiting module

b. 当 $2\pi - \alpha = \pi + \alpha$,即 $\alpha = \pi / 2$ 时,波形如图 6(b)所示。当已导通晶闸管关断时另一个晶闸管瞬 时开通,此时电流连续。可知,此时滤波电感通过串 联变压器一直串联于输电线路,即 $L_{eq}=L_{fo}$

c. 当 2π-α>π+α,即αε[0,π/2)时,波形如 图 6(c)所示。当已导通晶闸管的电流过零时刻晚于 未导通晶闸管触发脉冲时,未导通晶闸管的阀电压 为 0,不再触发导通,2个晶闸管中总有 1 个在任何 时刻都是截止状态^[22]。这种情况下,滤波电感电流 中的主要分量为直流分量,且易造成串联变压器饱和, 不属于故障电流的调节范围,应当尽量避免。

2.2 限流调节范围

若晶闸管的触发延迟角为 α ,由 2.1节分析可知, $\alpha \in [\pi/2, \pi]$,更一般地,则触发时刻为:

$$t = \alpha + n \pi \tag{6}$$

其中,*n*=0,1,2,…。在晶闸管导通期间,忽略滤波电感的电阻,则电感电流满足:

(1)

$$L_{\rm f} \frac{{\rm d}i_{\rm T2}}{{\rm d}t} = U_{\rm T} \sin(\omega t) \tag{7}$$

晶闸管导通后,滤波电感上流过电流的通解为:

$$i_{\rm T2} = A - \frac{U_{\rm T}}{\omega L_{\rm f}} \cos(\omega t) \tag{8}$$

其中,A 为积分常数。在初始时刻,由式(4)可知,受 串联变压器励磁阻抗和滤波电容的基波阻抗的影 响,在双向晶闸管支路触发时刻滤波电感上的电流 很小,为简化运算,近似认为其为0,则:

$$i_{\rm T2}(0) = A - \frac{U_{\rm T}}{\omega L_{\rm f}} \cos(\alpha + n \pi) \approx 0 \tag{9}$$

解出A后代入式(8),可得流过滤波电感的电流为:

$$i_{\rm T2} = \frac{U_{\rm T}}{\omega L_{\rm f}} \left[\cos\left(\alpha + n \, \pi\right) - \cos\left(\omega t\right) \right] \tag{10}$$

$$i_{\rm T2} = A_0 + \sum_{k_1=1} \left[A_{k_1} \cos(k\omega t) + B_{k_1} \sin(k\omega t) \right]$$
(11)

其中,k₁=0,1,2,…。且有:

$$A_{0} = \frac{1}{2\pi} \int_{t_{0}}^{t_{0}+2\pi} i_{\Gamma 2} d(\omega t)$$
(12)

$$A_{k_{1}} = \frac{1}{\pi} \int_{t_{0}}^{t_{0}+2\pi} i_{T2} \cos(k_{1}\omega t) d(\omega t)$$
(13)

$$B_{k_{1}} = \frac{1}{\pi} \int_{t_{0}}^{t+2\pi} i_{12} \sin(k_{1}\omega t) d(\omega t)$$
(14)

结合式(10)和(11),对基波进行傅里叶分解,有:

$$A_{1} = \frac{1}{\pi} \int_{\alpha}^{2\pi-\alpha} \frac{U_{T}}{\omega L_{f}} (\cos \alpha - \cos \theta) \cos \theta d\theta + \frac{1}{\pi} \int_{\pi+\alpha}^{3\pi-\alpha} \frac{U_{T}}{\omega L_{f}} [\cos(\alpha + \pi) - \cos \theta] \cos \theta d\theta + \frac{1}{\pi} \int_{\alpha}^{2\pi-\alpha} \frac{U_{T}}{\omega L_{f}} (\cos \alpha - \cos \theta) \sin \theta d\theta + \frac{1}{\pi} \int_{\pi+\alpha}^{3\pi-\alpha} \frac{U_{T}}{\omega L_{f}} [\cos(\alpha + \pi) - \cos \theta] \sin \theta d\theta$$

$$(15)$$

$$\begin{bmatrix} A_1 = \frac{U_T}{\pi \omega L_f} [2(\alpha - \pi) - \sin(2\alpha)] \\ B_1 = 0 \end{bmatrix}$$
(16)

因此,得到基波电流的瞬时值为:

$$i_{T2} = A_1 \cos(\omega t) = \frac{U_T}{\pi \omega L_f} [2\beta - \sin(2\beta)] \times \\ \sin(\omega t - \pi/2)$$
(17)

因此,滤波电感的等值阻抗为:

$$Z_{\text{Leq}}(\beta) = \frac{U_{\text{T}}\sin(\omega t)}{i_{\text{T2}}} = \frac{\pi \omega L_{\text{f}}}{2\beta - \sin(2\beta)}$$
(18)

其中, $\beta \in [0, \pi/2]$ 。若计及滤波电容 $C_{\rm f}$ 的影响,则串 联变压器二次侧的等效阻抗 $Z_{\rm fr2}$ 为:

$$Z_{\text{T2}} = \frac{Z_{Cf} Z_{\text{Leq}}(\beta)}{Z_{\text{Leq}}(\beta) + Z_{Cf}} = \frac{\pi \omega L_f}{2\beta - \pi \omega^2 L_f C_f - \sin(2\beta)} \quad (19)$$

其中,*Z*_{Cf}为滤波电容的等效阻抗。因此,*Z*_{T2}通过串 联变压器耦合至输电线路的等效限流阻抗 *Z*_{im}为:

$$Z_{\rm lim}(\beta) = \frac{k^2 \pi \omega L_{\rm f}}{2\beta - \pi \omega^2 L_{\rm f} C_{\rm f} - \sin(2\beta)}$$
(20)

若忽略滤波电容 $C_{\rm f}$ 的影响,则:

$$Z_{\rm lim}(\beta) = \frac{k^2 \pi \omega L_{\rm f}}{2\beta - \sin(2\beta)}$$
(21)
将 \beta - \pi - \alpha 代 人式(21) 有,

$$Z_{\rm lim}(\alpha) = \frac{k^2 \pi \omega L_{\rm f}}{2(\pi - \alpha) + \sin(2\alpha)}$$
(22)

特殊地,当 $\alpha = \pi/2$ 时, $Z_{lim}(\pi/2)$ 的大小如式(1) 所示。当 $\alpha = \pi$ 时,可看作晶闸管所接滤波电感支路 开路,由式(4)可知,Z_{im}(π)的大小可看作为串联变压 器励磁阻抗与滤波电容基波阻抗的并联,其为一个 较大的数值。

同时,为了保证输电线路过电流保护能够正确 动作,限制后的故障电流应为额定电流的 m 倍(即 满足电力系统原有过电流保护整定值要求),因此,α 需满足如下关系:

$$U_{\rm S}/Z_{\rm lim}(\alpha) \ge m I_{\rm L}$$
 (23)

化简可得:

$$\sin(2\alpha) - 2\alpha \leqslant 2\pi - \frac{mI_{\rm L}k^2\pi\omega L_{\rm f}}{U_{\rm S}}$$
(24)

由式(22)可知,当滤波电感 L_{f} 值确定后, Z_{Im} 仅 随可控硅触发相位角 α ,串联变压器一、二次侧电压 变比k变化而变化, Z_{Im} 与 α 、k的关系如图7所示。 由图7可知,当确定晶闸管触发角 α 时,随着串联变 压器变比k增大, Z_{Im} 也随之增大,如趋势1所示;当串 联变压器变比k确定时,随着晶闸管触发角 α 逐渐增 大, Z_{Im} 也随之增大,如趋势2所示。因此,通过调整 串联变压器变比和晶闸管触发角均能实现对限流阻 抗的调整,但当设备投入运行后,前者往往不可调, 更有效的选择便是进行对后者的调节。

3 仿真及实验

为验证新型 DVR 的功能,采用 PSCAD 软件搭建 模型。仿真系统如图 8 所示,图中电源电压为 10 kV, 系统最大负载容量为 1 MV·A,馈线 1、2 分别接一般 负载、敏感负载,各馈线容量不得超过 0.5 MV·A。当 电源侧电压波动或馈线 1 线路发生故障时,可能引 起 10 kV 母线电压波动,给馈线 2 所接敏感负荷用电 带来危害;当馈线 2 负载侧发生短路故障时,故障电 流将严重危害电网设备。仿真参数如下:系统线路阻 抗为 0.020+j0.314 Ω,串联变压器变比为 8:1,并联

Fig.8 Simulation system

变压器变比为 22.5:1,PWM 整流器滤波电感为 0.9 mH,LC 滤波电感为 1.5 mH,LC 滤波电容为 27 μF, DC 侧直流电容为 15 000 μF, 一般负载为 100 Ω, 敏感负载为 100 Ω。

3.1 多功能实现仿真

图 9 为新型 DVR 多功能实现的仿真波形。在 0.1~0.15 s 期间,10 kV 母线电压发生三相跌落,跌 落幅度为 20%。当系统检测到电压跌落时,新型 DVR 将运行在电压调节模式,逆变器输出补偿电压, 维持负载电压稳定;整个电压补偿过程中,馈线 2 线 路电流不变。同样,在 0.3~0.35 s 期间,10 kV 母线电 压发生电压抬升,幅度为 20%,新型 DVR 同样可维 持负载侧电压不变。

Fig.9 Simulative waveforms of multi-function of modified DVR

在 0.15~0.23 s 期间, 馈线 2 负载侧发生三相 金属性瞬时短路故障, 负载电压降为 0, 系统电压几 乎全部加在串联变压器两端。当不采取任何限制措 施时, 馈线 2 上的短路电流将接近 30 kA, 这对于前 级断路器的遮断容量要求较高。当控制系统检测到 馈线 2 上电流突然增大时, 新型 DVR 迅速切换至限 流模式, 故障电流被限制至约 190 A; 模式切换过程 中, 直流侧电压发生轻微波动。此外, 当故障电流被 限制在合理范围后, 在 0.2 s 时断路器可有效切断故 障线路; 故障消失后, 0.25 s 时断路器重合闸成功。

3.2 短路故障电流调节仿真

图 10 为不对称短路故障下故障电流的调节仿 真波形。0.15 s 时发生两相瞬时短路接地故障,新型 DVR 可实现分相控制,故障相进入限流调控模式, 非故障相正常运行,直流侧电压维持稳定。为验证本 文所提故障电流调节方法的有效性,假设进入限流 模式后,可控硅的触发相位为 α = π/2,线路电流连 续,此时滤波电感通过串联变压器一直串入输电线

Fig.10 Simulative waveforms of fault-current adjustment during asymmetric short circuit fault

路,限流阻抗大小可由式(2)求得,限制后的故障电流约为 190 A;为进一步限制故障电流幅值,调整晶 闸管触发相位为 $\alpha = 5 \pi / 9$,可得限流阻抗为 $Z_{im}(5 \pi / 9) \approx 1.282 Z_{lim}(\pi / 2)$,约增大了 1.282 倍,此时故障 电流被调节为 149 A。整个限流调节过程中直流侧 电压维持稳定。

3.3 实验验证

新型 DVR 三相各相结构及控制策略完全相同, 可实现分相独立控制,实验室仅搭建单相样机,采用 调压器模拟系统电压。假设系统正常运行时负载电 阻为 20 Ω,突然并联 20 Ω 电阻模拟负载侧短路故 障;切除 20 Ω 电阻模拟短路故障消除。本文提及的 故障电流模拟方法主要是为了确保实验环境安全, 避免短路故障对其他设备的冲击。实验参数如下:电 源电压为 50 V,串联变压器变比为 2:1,滤波电感为 1.5 mH,滤波电容为 27 μF,直流侧电容为 10000 μF, 反并联二极管型号为 MTC600A/12E,IGBT 型号为 FF450R12ME4。

3.3.1 电压补偿实验

为验证 DVR 的电压补偿功能,此时,将调压器电 压调整为 40 V,即模拟电网电压由 50 V 降至 40 V。 当新型 DVR 的控制系统检测到发生电压跌落时,立 即发出补偿电压 U_B 指令,保证敏感负载的供电,如 图 11 所示。整个补偿过程,晶闸管支路未投入,DVR 能够正确实现电压补偿功能。

短路限流实验波形如图 12 所示。正常情况下,线

Fig.12 Experimental results in fault-current limiting mode

路电流理论计算值约为 2.5 A,时刻 t_1 负载侧发生短路 故障,在不采取任何限制措施的情况下,线路电流理论 计算值约为 5 A。当检测到线路电流超过阈值后立即 封锁 IGBT 脉冲,在 $t_1 - t_3$ 期间,负载电流 I_L 突增。在 $t_3 - t_5$ 期间,由式(4)可知,负载电流很小。在时刻 t_5 晶闸管导通后,取 $\alpha = \pi/2$,限制后的故障电流大小 约为 4.2073 A。整个过程中,直流侧电压 U_{α} 能够维 持稳定。图 12 中还展示了晶闸管支路电流 I_{SCR} 、逆变 器输出电压 U_{inv} 的短路限流实验波形。值得说明的 是,实验中由于无法忽略系统参数的影响,上述电流 实际值略小于理论值。

4 结论

a. 在传统配电网中,需要分别采用限流装置、 DVR 装置实现限流、电压补偿功能;而本文通过在 DVR 系统的串联变流器交流输出端增设反并联晶 闸管支路的拓扑,实现了以上 2 种功能,所提拓扑体 积小、控制灵活,能够减小电网投资。

b. 通过控制晶闸管触发相位角的大小,实现了 对等效限流阻抗大小的调节。该方法能够避免新拓 扑下限流功能对电网过电流保护的影响,改善因滤 波电感值过小而导致的限流效果不佳的问题。

c. 仿真和实验结果验证了本文所提拓扑多功能的有效性及短路故障电流调节方法的正确性。今后将重点对新型 DVR 的应用展开研究。

参考文献:

- 周卫平,师维,王智勇,等. 三相三线动态电压恢复器最优控制策略[J]. 电力自动化设备,2014,34(1):91-95.
 ZHOU Weiping,SHI Wei,WANG Zhiyong, et al. Optimal control of three-phase three-wire dynamic voltage restorer[J]. Electric Power Automation Equipment,2014,34(1):91-95.
- [2] 王宝安,孟庆刚,商姣,等. 一种新型动态电压恢复器的仿真与实验[J]. 电力自动化设备,2013,33(9):25-30.
 WANG Baoan, MENG Qinggang, SHANG Jiao, et al. Simulation and experiment of new-type dynamic voltage restorer[J]. Electric Power Automation Equipment, 2013, 33(9):25-30.
- [3] 杨金涛,乐健,杜旭,等.中压区域补偿型动态电压恢复器设计
 [J].电力系统自动化,2015,39(21):120-125.
 YANG Jintao,LE Jian,DU Xu,et al. Design of regional com-

YANG Jintao, LE Jian, DU Xu, et al. Design of regional compensation dynamic voltage restorer in medium voltage system[J]. Automation of Electric Power Systems, 2015, 39(21):120-125.

- [4] MAHDIANPOOR M F, HOOSHMAND R A, ATAEI M. A new approach to multifunctional dynamic voltage restorer implementation for emergency control in distribution systems [J]. IEEE Transactions on Power Delivery, 2011, 26(2):882-890.
- [5]黄迪,曾正,邵伟华,等. 基于 DVR 的感应电动机柔性快速再启动方法[J]. 电力自动化设备,2017,37(1):197-203.
 HUANG Di,ZENG Zheng,SHAO Weihua, et al. Flexible and fast restart of induction motor based on DVR[J]. Electric Power Automation Equipment,2017,37(1):197-203.
- [6] 赵中原,吕征宇,江道灼,等. 新型固态限流器三相主电路拓扑及 控制策略研究[J]. 中国电机工程学报,2005,25(12):42-46. ZHAO Zhongyuan,LÜ Zhengyu,JIANG Daozhuo, et al. Study on three-phase main circuit topology and control strategy for a newtype solid-state current limiter[J]. Proceedings of the CSEE, 2005,25(12):42-46.
- [7] 孙树敏,刘洪顺,李庆民,等. 电力系统故障限流器研究综述[J].
 电网技术,2008,32(21):75-79.
 SUN Shumin,LIU Hongshun,LI Qingmin,et al. A summarization of research on fault current limiter of power system[J]. Power System Technology,2008,32(21):75-79.
- [8] 周雪松,向龙瑞,马幼捷,等.故障限流装置的发展和应用[J].电 工技术学报,2004,19(11):1-7. ZHOU Xuesong,XIANG Longrui,MA Youjie,et al. The development and application of fault current limiter device[J]. Transactions of China Electrotechnical Society,2004,19(11):1-7.
- [9] WOODLEY N H, MORGAN L, SUNDARAM A. Experience with an inverter-based dynamic voltage restorer[J]. IEEE Transactions on Power Delivery, 1999, 14(3):1181-1186.
- [10] 王华昕,王华峰,汤广福,等. 谐振型限流器过电压保护电路拓 扑设计与优化[J]. 中国电机工程学报,2008,28(15):1-6.
 WANG Huaxin,WANG Huafeng,TANG Guangfu, et al. Design and analysis on overvoltage protection circuit topology of resonance fault current limiter[J]. Proceedings of the CSEE,2008, 28(15):1-6.
- [11] 张晚英,周有庆,赵伟明,等. 偏流切换桥路型高温超导故障限 流器的实验研究[J]. 中国电机工程学报,2008,28(6):116-122. ZHANG Wanying,ZHOU Youqing,ZHAO Weiming, et al. Experimental research on a novel rectifier type high temperature superconducting fault current limiter based on bias DC voltage source change over[J]. Proceedings of the CSEE,2008,28(6): 116-122.
- [12] 邹亮,李庆民,许家响,等.考虑漏磁效应的永磁饱和型故障限 流器磁路建模与实验研究[J].中国电机工程学报,2012,32
 (21):137-145.
 ZOU Liang,LI Qingmin,XU Jiaxiang, et al. Magnetic topology

modeling and experimental study of permanent-magnet-biased saturation based fault current limiter with leakage flux effect [J]. Proceedings of the CSEE,2012,32(21):137-145.

- [13] 邹亮,伍珈乐,刘涛,等.大容量永磁偏置型故障限流器的经济 性分析与优化[J].电力自动化设备,2016,36(12):75-82.
 ZOU Liang,WU Jiale,LIU Tao,et al. Economic analysis and optimization of large-capacity permanent-magnet-biased fault current limiter[J]. Electric Power Automation Equipment,2016, 36(12):75-82.
- [14] LI Y W, VILATHGAMUWA D M, LOH P C, et al. A dualfunctional medium voltage level DVR to limit downstream fault currents [J]. IEEE Transactions on Power Electronics, 2007, 22

(4):1330-1340.

- [15] AJAEI F B, FARHNGI S, IRAVANI R. Fault current interruption by the dynamic voltage restorer [J]. IEEE Transactions on Power Delivery, 2013, 28(2):903-910.
- [16] MORAN L A, PASTORINI I, DIXON J, et al. A fault protection scheme for series active power filters[J]. IEEE Transactions on Power Electronics, 1999, 14(15):928-938.
- [17] AXENTE I, BASU M, CONLON M F, et al. Protection of unified power quality conditioner against the load side short circuits[J]. IET Power Electronics, 2010, 3(4):542-551.
- [18] 涂春鸣,姜飞,郭成,等. 多功能固态限流器的现状及展望[J]. 电工技术学报,2015,30(16):146-153.
 TU Chunming,JIANG Fei,GUO Cheng, et al. Present state and perspectives of multi-funciton solid-state fault current limiter
 [J]. Transactions of China Electrotechnical Society,2015,30 (16):146-153.
- [19] SHUAI Zhikang, PENG Yao, SHEN Z J, et al. Design consideration of a Fault Current Limiting Dynamic Voltage Restorer (FCLDVR)[J]. IEEE Transactions on Smart Grid, 2015, 6(1):14-25.
- [20] JIANG Fei, TU Chunming, SHUAI Zhikang, et al. Multilevel cascaded-type dynamic voltage restorer with fault current limiting

function[J]. IEEE Transactions on Power Delivery,2016,31(3): 1261-1269.

- [21] 杜吉飞,赵红雁,郑琼林. 三相 PWM 整流器开关模式逻辑电流 控制[J]. 电力自动化设备,2016,36(2):78-82.
 DU Jifei,ZHAO Hongyan,ZHENG Trillion Q. Switching pattern logic current control for three-phase PWM rectifier[J]. Electric Power Automation Equipment,2016,36(2):78-82.
- [22] 王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2015:204-207.

作者简介:

姜 飞(1985—),男,陕西宝鸡人,讲师,博士,主要研究方向为电力电子技术在 电力系统中的应用(**E-mail**:jiamg85521@126. com);

涂春鸣(1976—),男,江西南昌人,教授,博士研究生导师,博士,主要研究方向为 电力电子技术在电力系统中的应用:

熊龙珠(1988—),男,湖南张家界人,硕 士,主要研究方向为电力系统分析与控制。

Active short circuit current adjustment by modified dynamic voltage restorer

JIANG Fei¹, TU Chunming², XIONG Longzhu³, GUO Qi², WU Liangui²

(1. College of Electrical and Information Engineering, Changsha University of Science & Technology,

Changsha 410004, China; 2. Power Conversion and Control Engineering Technology Research Center,

Hunan University, Changsha 410082, China; 3. State Grid Zhangjiajie Electric Power Bureau,

Zhangjiajie 427000, China)

Abstract: A modified topology of DVR(Dynamic Voltage Restorer) is proposed, which has an additional bidirectional thyristor branch across the output terminals of series inverter to realize the functions of dynamic voltage compensation and fault-current limiting. The mechanism of its fault-current limiting is analyzed and an operating model is established, based on which, a method of fault-current adjustment by changing the firing angle of thyristor is proposed and the adjustment range of current limiting impedance is developed for its cooperation with the existing over-current protection of grid. The correctness of the proposed topology and adjustment method is verified by the simulation based on the PSCAD/EMTDC software and a lab prototype. **Key words**: dynamic voltage restorer; fault-current limiting; electric filters; multi-function; active adjustment