王秋杰1,金 涛1,梅李鹏2,刘 军2

(1. 福州大学 电气工程与自动化学院,福建 福州 350116;2. 国网江西省电力有限公司 九江供电公司,江西 九江 332000)

摘要:针对配电网故障的基于模型诊断方法在发生多重多相故障时存在诊断速度慢、诊断准确率不高、容错能力低的情况,提出一种适用于配电网故障的基于模型分层诊断方法。在诊断算法上,利用新的适应度函数和特征学习搜索策略来提高诊断速度和诊断准确率。在诊断模型上,利用分层的方法,将单层单次高维度运算转变为2层多次低维度运算,进而再次提高诊断速度、诊断准确率;通过定义等效部件的约束关系式提高第1层诊断的容错能力,利用电压约束和电流约束的冗余关系提高第2层诊断的容错能力。算例表明,与其他模型相比,基于模型分层诊断方法的诊断速度有了较大的提高,诊断准确率始终维持在理想值附近,容错能力明显增强;在大规模配电网故障诊断中,其优势明显。

关键词:配电网;故障诊断;基于模型诊断;分层诊断

中图分类号:TM 76

文献标志码:A

DOI:10.16081/j.epae.201912026

0 引言

配电网故障诊断是电力系统安全、稳定运行的 重要保障。目前基于人工智能的配电网故障诊断方 法已成为研究的热点^[1-2]。基于模型诊断 MBD(Model-Based Diagnosis)是人工智能的一个重要分支,由 于其克服了传统故障诊断方法中知识不易获取、对专 家经验依赖性强等缺陷,被广泛应用于各个领域^[3-5]。

许多学者在分析配电网故障特点的基础上,将 MBD应用到配电系统的故障诊断中,并取得了一定 的成果。文献[6-7]首次将MBD方法应用到牵引变 电站故障诊断中,在诊断简单的牵引变电站故障时, 该方法能够取得较好的诊断效果。文献[8-9]首次 将MBD方法应用到配电网的故障诊断中,在诊断简 单的配电网故障时,该方法能够准确诊断出所有故 障元件,但随着故障重数和故障相数的不断增加,其 存在诊断速度不高、准确率降低的情况。在容错能 力上,若故障信息发生漏报和误报,MBD方法将无 法诊断出所有故障元件。文献[10-11]在文献[8]的 基础上进行了相关改进:在搜索最小冲突集候选 (MCSC)时,采用树形行标记搜索方法确保了得到的 最小冲突集的完备性;在最小碰集(MHS)故障排序 中,利用后验概率使故障排序更加准确。但是该方 法依然没有摆脱在多重多相故障下,诊断速度、诊断 准确率、诊断容错能力方面的缺陷。文献[12-13]将 MBD方法引入高铁配电系统中,在诊断简单的高铁

收稿日期:2019-01-19;修回日期:2019-10-29

基金项目:欧盟FP7国际科技合作基金资助项目(909880); 国家自然科学基金资助项目(61304260)

Project supported by the FP7 International Science & Technology Cooperation Foundation of EU(909880) and the National Natural Science Foundation of China(61304260)

配电系统故障时,该方法能够取得较好的诊断效果, 但在多重多相故障下,其依然存在诊断速度和诊断 准确率低、容错能力不足的问题。

综上所述,MBD方法在配电系统中已取得丰硕 成果,但还存在以下问题:①在多重多相故障下,诊 断速度低,不能满足在线诊断的要求;②在多重多相 故障下,最小碰集实现率降低,进而造成诊断准确率 降低;③在容错能力上,若故障信息发生漏报和误 报,该方法将无法诊断出所有故障元件。

为了提高MBD方法在配电网发生多重多相故 障下的诊断速度、诊断准确率以及容错能力,本文提 出了一种适用于配电网故障的基于模型分层诊断 MBHD (Model-Based Hierarchical Diagnosis) 方法。 首先,在确定最小冲突集的过程中,通过分析配电网 测量点位置和拓扑结构得出电压约束和电流约束存 在冗余关系,进而提高MBD方法的容错能力;然后, 在最小碰集求解过程中,提出一种新的适应度函数, 保证粒子不断地朝着最小碰集迭代,从而提高对有 解空间的搜索效率;同时,提出一种"特征学习"的搜 索策略,减少对无解空间的搜索,在一定程度上提高 了MBD方法的诊断速度和准确率;最后,结合配电 网的拓扑特点,构建分层诊断模型,将单层单次高维 度的粒子迭代转化为2层多次低维度粒子迭代,进 一步提高MBD方法的诊断速度、准确率;通过定义 等效部件的约束关系式进一步加强第1层诊断的容 错能力。仿真验证结果表明, MBHD 方法比其他 MBD方法优势明显,更加适用于配电网故障诊断。

1 最小冲突集分析

在根据约束关系所隐含的信息搜索最小冲突集 候选时,通常只利用配电线路的电压约束^[6-13]。在故 障发生后,若故障电气量在采集和通信过程中发生 畸变,将导致得到的最小冲突集簇不完备。若能够 证明配电线路电压约束和电流约束存在冗余关系,则MBD方法的容错能力将得到大幅提高。

配电网的1个区段通常包含馈线线路和母线2 类元件,区段两端通常安装有配网自动化的测量装 置(FTU),如图1所示。

图1 配电网区段拓扑

Fig.1 Topology of distribution network section

图1中, L_i 为馈线线路,对应的阻抗为 Z_i ; B_i 为母线; M_i 为测量点,测量信息包括电压 U_i 和电流 I_i ; U'_j 和 I'_i 分别为区段和母线连接处的电压和电流,为非测量信息。

根据 MBD 的元件建模方法可得 A 相馈线线路 L_{ia}的电压、电流约束关系为:

$$U'_{jA} - U_{iA} + Z_{iA} I'_{jA} = 0$$
 (1)

$$I_{iA}' - I_{iA} = 0 (2)$$

同理可得 A 相母线 B_{iA} 的电压、电流约束关系为:

$$U_{i+1A} - U_{jA}' = 0 \tag{3}$$

$$U_{i+2A} - U'_{jA} = 0 (4)$$

$$I_{i+1A} + I_{i+2A} - I'_{jA} = 0 \tag{5}$$

联立式(1)和式(5),消去非测量点电压 U'_{jA} 和电流 I'_{jA} ,可得元件集 $[L_{iA}, B_{iA}]$ 的电压和电流约束关系式如式(6)—(8)所示。

$$U_{i+1A} - U_{iA} + Z_{iA} (I_{i+1A} + I_{i+2A}) = 0$$
 (6)

$$U_{i+2A} - U_{iA} + Z_{iA} (I_{i+1A} + I_{i+2A}) = 0$$
(7)

$$I_{i+1A} + I_{i+2A} - I_{iA} = 0 \tag{8}$$

若悬挂馈线线路L_{iA},则电压约束关系(式(6))不成立;若悬挂母线B_{iA},则电压约束关系(式(6))也不成立,故馈线线路L_{iA}和母线B_{iA}都为元件集[L_{iA},B_{iA}]的基本元件。据此可以得出,元件集[L_{iA},B_{iA}]为电压约束关系(式(6))的最小支持环境即最小冲突集候选。同理可得,元件集[L_{iA},B_{iA}]为电压约束关系(式(7))和电流约束关系(式(8))的最小支持环境即最小冲突集候选。

综上可知,元件集[L_{iA},B_{iA}]对应的电压约束关 系(式(6)和式(7))和电流约束关系(式(8))三者存 在约束冗余。

B相元件集和C相元件集的电压和电流约束关系分别如附录A中的式(A1)—(A3)和式(A4)—(A6)所示,同理可得,B、C相元件集对应的电压约束和电流约束都存在冗余关系,则可知每相元件集对应的电压约束和电流约束都存在冗余关系。

2 最小碰集算法分析

最小碰集计算是MBD方法中耗时最长、最关键的一步,其运算性能直接决定着MBD方法的诊断时间和诊断准确率^[6]。因此,本文通过构建一种新的适应度函数提高对有解空间的搜索效率;同时,提出一种"特征学习"的搜索策略,减少对无解空间的搜索。

2.1 适应度函数构建

在文献[11]中,最小碰集算法采用的适应度函数为:

$$\max f_1 = (h_{\text{num}} + h)/(2P)$$
(9)

其中,P为粒子群X的规模;h_{num}为粒子群X中与冲突 集簇C_s的每个冲突集都有交集的粒子个数;h为粒 子群X中包含的不同个体的数量。该适应度函数通 过h_{num}保证粒子群X中碰集的数量随着迭代的进行 而不断增加,通过h保证粒子更新时尽量减少相同 个体的出现。但是该适应度函数由于有了P的参 与,粒子的适应度值容易受粒子群规模的影响。

文献[13]中最小碰集算法采用的适应度函数为:

$$\min f_2(x) = 1 - N_{Cx} / N_C \tag{10}$$

其中, N_{cx} 为最小冲突集簇C中与当前粒子x有交集的冲突集数量; N_c 为最小冲突集簇C中冲突集的数量。

文献[14]中最小碰集算法采用的适应度函数为:

$$\max f_3(x) = N_{cx}/N_c \tag{11}$$

式(10)和式(11)所示的适应度函数在本质上是 相同的,均避免了受粒子群规模P的影响,但是在适 应度值上只能够区分非碰集粒子与碰集粒子,无法 区分碰集粒子与最小碰集粒子。

文献[15]中最小碰集算法采用的适应度函数为:

$$\max f_4(x) = N_{Cx} / L_x \tag{12}$$

其中,L_x为粒子x的长度,即粒子中含"1"的个数。该 适应度函数也避免了受粒子群规模P的影响,且能 够在适应度值上区分碰集粒子和最小碰集粒子,但 是在迭代过程中容易受到非碰集粒子的影响。

由于配电网拓扑结构是辐射形的,在配电网故 障的最小冲突集簇中,各最小冲突集之间没有交集, 所以搜索到的每个最小碰集具有以下特点:

$$L_{\rm MHS} = N_c \tag{13}$$

其中,L_{MHS}为最小碰集的长度。

综上所述,本文基于现有适应度函数的不足,考 虑配电网故障的最小碰集的特点,提出一种新的适 应度函数如式(14)所示。

$$\max F(X) = N_{cx}/N_c + (1 - \omega | L_x - N_c |)$$
(14)

其中, N_{c_x}/N_c 保证了粒子向碰集方向迭代^[15],是迭代的主要判据; $1-\omega | L_x - N_c |$ 应保证粒子在碰集的基

础上继续向最小碰集迭代,是迭代的次要判据,故权 重 ω 应设置为小数^[16-17]。假设最复杂的配电网故障 为三重三相故障,则最小冲突集簇的集合个数最大 为9,故 N_{cx}/N_c 的最小间隔为 $1/9\approx0.1, 1-\omega | L_x - N_c |$ 的最小间隔应比0.1小1个数量级,则取 $\omega=0.01^{[16-17]}$ 。

此适应度函数的适应度值不受种群规模P和非 碰集粒子的影响,不仅能够保证粒子不断地朝着碰 集迭代,而且能够保证粒子朝着最小碰集迭代,有效 提高了对有解空间的搜索效率。

2.2 特征学习策略

为了减少对无解空间的搜索迭代,本文提出一 种适合配电网的"特征学习"搜索策略[14]。具体为: 在整个迭代搜索过程中,当N_c/N_c=1时,对应的粒 子x,为碰集,将该粒子装入1个集合,成为精英集候 选。该集合的最小长度和最大长度分别为pmin和 pmar,碰集长度是指碰集中含"1"的个数。在更新粒 子位置后,若该粒子不是碰集且长度不在[pmin, pmax] 范围内,则直接进入下一轮循环;若该粒子不是碰 集但长度在[pmin, pmar]范围内,则更新个体最优粒 子ghet和全局最优粒子zhet后,进入下一轮循环;若该 粒子是碰集但长度不在[pmin, pmax]范围内,则更新 $[p_{\min}, p_{\max}]$,然后更新个体最优粒子 g_{best} 和全局最优粒 子z_{best}后,进入下一轮循环;若该粒子是碰集且长度 在[p_{\min}, p_{\max}]范围内,则计算适应度值F(x), 若F(x)=2,则表示该粒子为最小碰集,放入精英集(ES);若 F(x)≠2,则通过最小碰集保证策略(MHSES)去掉超 集,并将得到的最小碰集装入精英集。改进后的最 小碰集算法(IPSO)的具体过程如附录B中的图B1 所示。图中, P_{nonsize} 为设置的种群个数; G_{max} 为设置的 最大迭代次数。

3 诊断模型分层

多分支(3个及以上)节点是配电网拓扑结构的 重要组成部分,决定着配电网拓扑结构的复杂程 度^[18-19]。以2个三分支节点构成的配电网为例,如图 2所示,分析分层的可行性。

图2 典型配电网拓扑结构

Fig.2 Typical topology structure of distribution network

根据第1节得出的结论,区段1的A相电压和电 流约束关系式为:

$$U_{2A} - U_{1A} + Z_{1A}I_{2A} = 0 \tag{15}$$

$$-I_{1A} + I_{2A} = 0 \tag{16}$$

区段2的A相电压和电流约束关系式为:

$$U_{3A} - U_{2A} + Z_{2A} (I_{3A} + I_{5A}) = 0$$
(17)

$$U_{5A} - U_{2A} + Z_{2A} (I_{3A} + I_{5A}) = 0$$
(18)

$$-I_{2A} + I_{3A} + I_{5A} = 0 \tag{19}$$

联立式(17)—(19),消去 M_2 的测量信息可得:

$$U_{3A} - U_{1A} + (Z_{1A} + Z_{2A})(I_{3A} + I_{5A}) = 0$$
 (20)

$$U_{5A} - U_{1A} + (Z_{1A} + Z_{2A})(I_{3A} + I_{5A}) = 0$$
 (21)

$$-I_{1A} + I_{3A} + I_{5A} = 0 \tag{22}$$

从式(20)—(22)中可以发现,馈线线路 L_{1A} 、 L_{2A} 和母线 B_{1A} 、 B_{2A} 可以合成为1个部件 R_A ,该部件对应的约束关系即为式(20)—(22)。

同理, 馈线线路L_{1B}、L_{2B}和母线B_{1B}、B_{2B}可以合成为1个部件R_B, 该部件对应的约束关系式为:

$$U_{3B} - U_{1B} + (Z_{1B} + Z_{2B})(I_{3B} + I_{5B}) = 0$$
 (23)

$$U_{5B} - U_{1B} + (Z_{1B} + Z_{2B})(I_{3B} + I_{5B}) = 0$$
(24)

$$-I_{1R} + I_{3R} + I_{5R} = 0 \tag{25}$$

馈线线路L_{1c}、L_{2c}和母线B_{1c}、B_{2c}可以合成为1 个部件R_c,该部件对应的约束关系式为:

$$U_{3C} - U_{1C} + (Z_{1C} + Z_{2C})(I_{3C} + I_{5C}) = 0$$
 (26)

$$U_{5C} - U_{1C} + (Z_{1C} + Z_{2C})(I_{3C} + I_{5C}) = 0$$
 (27)

$$-I_{1C} + I_{3C} + I_{5C} = 0 \tag{28}$$

由于每个测量点通常是将采集的三相电流、电 压信息一起上传系统,同时,为进一步提高故障诊断 容错能力,作出以下定义:

$$U_i = \max \{ U_{iA}, U_{iB}, U_{iC} \}$$
 (29)

$$I_{i} = \max\{I_{iA}, I_{iB}, I_{iC}\}$$
(30)

$$Z_i = \max\left\{Z_{iA}, Z_{iB}, Z_{iC}\right\}$$
(31)

根据此规定,式(20)—(22)可以用式(32)表示, 式(23)—(25)可以用式(33)表示,式(26)—(28)可 以用式(34)表示。

1

$$U_3 - U_1 + (Z_1 + Z_2)(I_3 + I_5) = 0$$
(32)

$$U_5 - U_1 + (Z_1 + Z_2)(I_3 + I_5) = 0$$
(33)

$$-I_1 + I_3 + I_5 = 0 \tag{34}$$

据此, R_A 、 R_B 、 R_C 可以进一步等效为1个部件R, 如图3所示。图中, M_1 、 M_3 、 M_5 为部件R的测量点; 馈 线线路 L_{1A} 、 L_{2A} 、 L_{1B} 、 L_{2B} 、 L_{1C} 、 L_{2C} 和母线 B_{1A} 、 B_{2A} 、 B_{1B} 、 B_{2B} 、 B_{1C} 、 B_{2C} 为部件R包含的元件。式(32)—(34)为 部件R对应的约束关系。

Fig.3 Equivalent part

若以多分支节点为边界,将整个配电网划分为 若干个子系统,对每个子系统进行部件等效,则每个 子系统都可以用一个等效部件及其关联的测量点表 示,这些子系统构成故障诊断的第1层模型,每个子 系统包含的元件及其相关联的测量点构成故障诊断 的第2层模型^[20]。

与第1节的分析方法相同,部件R为电压约束 关系(式(32)、(33))的最小支持环境,同时也为电流 约束关系(式(34))的最小支持环境,故式(32)— (34)存在约束冗余,这种约束冗余为第1层诊断出 故障部件提供了容错性支持。

4 MBHD方法的诊断流程

MBHD方法的诊断流程见附录B中图B1,具体如下。

(1)离线构建分层诊断模型。将整个配电网划 分为若干个子系统,对各个子系统进行部件等效,并 得出所有关于部件*R*(*j*)的约束关系;在各个子系统 内部得出关于元件的约束关系。

(2)离线搜索各层最小冲突集候选。根据第1 层约束关系所隐含的信息搜索出关于部件的最小冲 突集候选。根据第2层约束关系所隐含的信息搜索 出关于元件的冲突集候选。

(3)在线确定故障部件。故障发生后,将第1层 测量点采集的故障信息代入第1层最小冲突集候选 (FLMCSC)C_{FLMCS}对应的约束关系(第1层最小冲突 集候选数量为N_{FL}),计算相对残差(RR),从而确定 第1层最小冲突集(FLMCS)S_{FLMC};系统根据第1层最 小冲突集确定第1层最小碰集(FLMHS)S_{FLMH},由于 部件的最小冲突集均为单元件集合且每个部件内部 所包含的元件各不相同,故各个最小冲突集的并集 即为部件的最小碰集;对于单元件集合而言,第1层 最小碰集也是故障部件集。

(4)在线确定故障元件。根据第1层的诊断结 果,将各故障部件R(j)内部测量点采集的故障信息 代入第2层最小冲突集候选(SLMCSC) C_{SLMCS} (数量为 $N_{R(j)}$)对应的约束关系,计算相对残差,确定各子系 统关于元件的最小冲突集(SLMCS) S_{SLMC} 。各部件根 据 IPSO 算法确定关于元件的最小碰集(SLMHS) S_{SLMH} ;对最小碰集进行故障排序,将故障概率最大 (最大故障概率为 P_{max})的最小碰集装入故障集 (FS),然后输出故障集。

5 算例仿真

5.1 基于模型分层诊断流程

以14节点配电网模型为例对本文所提方法的 诊断流程进行说明,该模型如图4所示。图中, B_0 — B_{14} 为母线, L_1 — L_{14} 为馈线线路,每个区段的阻抗用 Z_1 — Z_{14} 表示; M_0 — M_{18} 为信息测量点,它们通过FTU 采集各开关处的电流和电压信息,其中 M_1 处的开关 为断路器, M_4 , M_{13} , M_8 , M_{18} 处的开关为联络开关,其 余信息测量点处的开关为分段开关。

图4 配电网案例分析图

Fig.4 Case analysis diagram of distribution network

(1)构建分层诊断模型。

根据多分支节点确定第1层模型的测量点为 $M_1, M_2, M_4 - M_6, M_8, M_9, M_{11}, M_{13}, M_{15}, M_{18}, 并将整个$ $配电网划分为7个子系统<math>S_1 - S_7$,如图4所示。根据 上文的等效原则,将各个子系统内的元件分别等效 为7个部件 $[R_1] - [R_7], 第1层诊断模型的所有约束$ 关系见附录C中的表C1。

每个子系统内部包含的元件及其关联的测量点构成第2层诊断模型,具体见附录C中的表C2。第2 层诊断模型的所有约束关系见附录C中的表C3。

(2)搜索最小冲突集候选。

利用上述各层约束关系所隐含的信息,离线搜 索第1层最小冲突集候选和第2层最小冲突集候选, 具体见附录C中的表C4。

(3) 确定故障部件。

设置馈线线路L₃、L₆发生三相短路故障,将第1 层各信息测量点采集的故障信息及元件参数代入对 应的约束关系,计算相对残差,结果见附录C中的 表C5。

设置相对残差阈值为0.2,得出第1层最小冲突 集 $S_{FLMC} = \{S_{FLMC2}, S_{FLMC4}\} = \{ [R_2], [R_4] \}_{\circ}$

对各冲突集取并集,得到第1层模型的最小碰 集*S*_{FLMH}=[R₂, R₄],则确定部件R₂、R₄发生故障。

(4)确定故障元件。

根据部件诊断结果,将子系统S₂、S₄包含的测量 点采集的故障信息和元件参数代入第2层对应的约 束关系,并计算得到S₂、S₄的相对残差分别如附录C 中的表C6、C7所示。

根据残差阈值,得到第2层最小冲突集 S_{SLMC} ;依据IPSO算法,得到第2层最小碰集 S_{SLMH} ; S_{SLMC} 和 S_{SLMH} 分别如附录C中的表C8、C9所示。

按照文献[8]中的元件故障概率进行故障排序, 排序结果见附录C中的表C10。 则可以判定[L_{3A}, L_{3B}, L_{3C}]、[L_{6A}, L_{6B}, L_{6C}]发生故障, 与故障设置吻合。

5.2 与其他诊断模型对比

(1)诊断效率和诊断准确性验证。

为了验证本文所提诊断方法在诊断效率和诊断 准确性上的优势,将本文方法与文献[8]方法(方法 1)、文献[10]方法(方法2)进行对比。对图4所示的 系统,在L₃设置单重单相、单重两相、单重三相短路 故障,在L₃、L₆设置两重单相、两重两相、两重三相短路 故障,在L₃、L₆、L₁₄设置三重单相、三重两相、三重 三相短路故障,采用不同方法时最小碰集粒子维度 和理论最小碰集个数的统计结果、诊断时间和诊断 准确率见图5。图中,横坐标1—9分别表示单重单 相、单重两相、单重三相、三重单相、三重两相、三重 三相、三重单相、三重两相、三重三相短路故障。

图 5 不同方法的粒子维度、理论最小碰集个数、 诊断时间和准确率对比

Fig.5 Comparison of particle dimension and theoretical number of minimum hitting set, diagnosis time and accuracy rate among different methods

从图5中可以得出以下结论。

(1)随着故障重数和故障相数的不断增加,本文 诊断方法的粒子维度始终在2、4、6之间循环,方法 1、2的粒子维度与故障重数和相数成比例增加;本 文方法的最小碰集个数呈比例增长,而方法1、2的 最小碰集个数呈指数增长。

(2)随着故障重数和故障相数的不断增加,本文 方法的诊断时间始终在0.3 s以内,而方法1、2的诊 断时间呈指数增加。这说明新的适应度函数和"特 征学习"策略提高了碰集搜索效率,模型分层使得整 个MBD方法的诊断架构更加优化。随着故障重数 和故障相数的不断增加,本文方法的诊断准确率始 终维持在100%左右,而方法1、2的诊断准确率不断下降,或者说方法1、2要想维持准确率不下降,迭代的次数和粒子群规模必须足够大,但这样必然造成诊断时间过长。

(2)容错能力验证。

为了验证本文所提诊断方法在容错能力上的优势,设置发生故障时,发生漏报 U_{3A}和误报 U_{8B}、I_{18C}的情况,此时3种方法的诊断结果如表1所示。

表1 漏报和误报时的诊断结果

Table 1 Diagnosis results under misreport

and fa	ail re	por
--------	--------	-----

	1	
北陸米司	故障元件道	诊断结果
取陧矢望	方法1、2	本文方法
单重单相	无故障元件	$[L_{3A}]$
单重两相	[L _{3B}]	$[L_{3A}, L_{3B}]$
单重三相	$[L_{3B}], [L_{3C}]$	$[L_{_{3A}}, L_{_{3B}}, L_{_{3C}}]$
两重单相	$[L_{6A}]$	$[L_{3A}], [L_{6A}]$
两重两相	$[L_{3B}], [L_{6A}]$	$[L_{3A}, L_{3B}], [L_{6A}, L_{6B}]$
两重三相	$[L_{3B}, L_{3C}], [L_{6A}, L_{6C}]$	$[L_{3A}, L_{3B}, L_{3C}], [L_{6A}, L_{6B}, L_{6C}]$
三重单相	$[L_{6A}], [L_{14A}]$	$[L_{3A}], [L_{6A}], [L_{14A}]$
三重两相	$[L_{3B}], [L_{6A}], [L_{14A}, L_{14B}]$	$\begin{matrix} [\mathrm{L}_{3\mathrm{A}},\mathrm{L}_{3\mathrm{B}}], [\mathrm{L}_{6\mathrm{A}},\mathrm{L}_{6\mathrm{B}}], \\ [\mathrm{L}_{14\mathrm{A}},\mathrm{L}_{14\mathrm{B}}] \end{matrix}$
三重三相	$[L_{3B}, L_{3C}], [L_{6A}, L_{6C}], [L_{14A}, L_{14B}]$	$[L_{3A}, L_{3B}, L_{3C}], [L_{6A}, L_{6B}, L_{6C}], [L_{14A}, L_{14B}, L_{14C}]$

从表1可见,在故障信息发生畸变时,由于方法 1、2没有容错能力,只能诊断出部分故障元件。而 本文方法在进行第1层诊断时,利用关于部件的约 束冗余,消除了U₈₈、I_{18C}误报的影响;在进行第2层诊 断时,利用关于元件的约束冗余,消除了U_{3A}漏报和 U₈₈、I_{18C}误报的影响,可诊断出全部故障元件。因 此,本文方法在容错能力上明显高于其他2种方法。

(3)配电网拓扑结构变化的适应性分析。

在图 4 中, 设 M_{4} 、 M_{13} 、 M_{8} 、 M_{18} 处的联络开关闭 合, M_{11} 、 M_{16} 处的分段开关断开, 其拓扑结构见图 6。

图6 拓扑变化后的配电网

Fig.6 Distribution network after topology change

图6中,子系统S₂、S₆合并,子系统S₇的部分元件 划分到子系统S₄中,部分元件划分到子系统S₅中,分 别形成新的子系统 S'_2 、 S'_4 、 S'_5 ,其对应得到第2层最小 冲突集候选 C'_{SLMCS2} 、 C'_{SLMCS4} 、 C'_{SLMCS5} ,具体见附录C中的 表C11。

由表 C11 可知,在 L₃、L₆发生三相短路故障时, 得到的最小冲突集却没有发生变化,依然为 S_{SLMC2}、 S_{SLMC4},导致最小碰集计算和故障结果也不变。由此 可知,配电网拓扑的变化对 MBD 方法离线进行的部 分影响较大,对在线进行的部分影响较小。这说明 本文方法的粒子维度、最小碰集个数、诊断准确率、 容错能力不受配电网拓扑变化的影响;在诊断时间 上,虽然在最小冲突集识别中需要计算更多的约束 关系式残差,但是由于模型分层后并不需要计算全 部约束关系的残差,且 MBD 方法的诊断时间主要取 决于碰集的计算时间^[6],因此,本文方法的诊断时间 也几乎不受配电网拓扑变化的影响。

5.3 在大规模故障下的应用

为了验证本文所提方法在大规模故障下的优势,在L₃、L₆、L₇、L₉、L₁₀、L₁₄处分别设置四重三相、五 重三相、六重三相故障,统计本文方法的最小碰集粒 子维度、理论最小碰集个数、诊断时间、诊断准确率, 结果表2所示。

表2 大规模故障下的诊断结果

Table 2	Diagnosis	results	under	large-scale	faults
---------	-----------	---------	-------	-------------	--------

故障规模	粒子维度	理论最小 碰集数	诊断 时间 / s	准确率 / %
四重	6	32	0.207	100
五重	6	40	0.223	100
六重	6	48	0.251	100

从表2可见,在大规模故障下,分层模型使得粒 子维度始终维持在较小值;理论最小碰集个数只与故 障重数呈比例增长关系;诊断时间仍维持在0.3 s以 内,满足在线诊断要求;准确率始终维持在100%。 这说明,即使在小概率的大规模配电网故障情况下, MBHD方法表现出较强的适应性。

6 结论

MBHD方法在配电网故障诊断中具有较强的适用性,具体表现在:

(1)利用电压约束和电流约束的冗余关系能够 使 MBD 故障诊断有一定的容错能力;

(2)新的适应度函数和"特征学习"的搜索策略 在一定程度上能够提高诊断速度和准确率;

(3)诊断模型分层不仅能够在简单故障下保证 故障诊断的速动性和准确性,而且在复杂故障甚至 大规模故障下依然能够满足在线诊断要求和准确率 要求。

MBD方法在电力系统故障诊断中已有较多应 用,实际上它的问题在于对时间标签的忽略以及单 纯利用了基尔霍夫电流、电压定律约束来判别的元 件状态,对于故障的暂态、时序、逻辑关系约束并未 实际使用。建立故障暂态约束需要在配电网安装故 障录波装置,通过分析故障后1~2个周期内的暂态 量的故障特征判别不同故障点和故障类别,进而定 位故障元件。建立时序约束需要在配电网安装相量 测量单元,通过告警信息的时间标签来构建时序约 束式,根据收集到的故障告警信息是否满足时序约 束式可以有效解决告警信息的漏报和误报问题,提 高MBD方法的容错能力。如何利用逻辑关系约束 需要考虑三段式保护整定方法和断路器动作逻辑、 分段开关和联络开关的状态;同时断路器存在误动 作和不动作的可能,开关(断路器、分段开关、联络开 关)开关量的采集和通信也存在漏报和误报的可能, 这也是逻辑约束需要考虑的。

附录见本刊网络版(http://www.epae.cn)。

参考文献:

- [1]田方媛,张岩,徐兵,等. 多代理系统框架下的主动配电系统故 障诊断[J].电力自动化设备,2016,36(6):19-26.
 TIAN Fangyuan,ZHANG Yan,XU Bing, et al. Fault diagnosis based on multi agent system for active distribution system
 [J]. Electric Power Automation Equipment,2016,36(6):19-26.
- [2] 高孟友,徐丙垠,张新慧. 基于故障电流幅值比较的有源配电
 网故障定位方法[J]. 电力自动化设备,2015,35(7):21-25.
 GAO Mengyou, XU Bingyin, ZHANG Xinhui. Fault location
 based on fault current amplitude comparison for active distribution network[J]. Electric Power Automation Equipment,2015, 35(7):21-25.
- [3]郭谋发,游建章,张伟骏,等.基于三相级联H桥变流器的配电
 网接地故障分相柔性消弧方法[J].电工技术学报,2016,31 (17):11-22.

GUO Moufa, YOU Jianzhang, ZHANG Weijun, et al. Separate phase flexible arc-suppression method of earth fault in distribution systems based on three-phase cascaded H-bridge converter[J]. Transactions of China Electrotechnical Society, 2016, 31(17):11-22.

- [4] SIDHU A, IZADIAN A, ANWAR S. Adaptive nonlinear model based fault diagnosis of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2):1002-1011.
- [5] MENGSHOEL O J, CHAVIRA M, CASCIO K, et al. Probabilistic model based diagnosis: an electrical power system case study[J]. IEEE Transactions on Systems Man & Cybernetics Part A Systems & Humans, 2010, 40(5):874-885.
- [6] WANG Qiujie, JIN Tao, MOHAMED M A. An innovative minimum hitting set algorithm for model-based fault diagnosis in power distribution network[J]. IEEE Access, 2019, 5(1):1-10.
- [7] LIU Zhigang, HU Keting. A model-based diagnosis system for traction power supply system[J]. IEEE Transactions on Industrial informatics, 2017, 13(6):2834-2843.
- [8] 胡非,刘志刚,范福强,等. 配电网线路故障的基于模型诊断方法[J]. 电力系统自动化,2012,36(10):56-60.
 HU fei,LIU Zhigang,FAN Fuqiang, et al. Distrbution network line fault diagnosis with model based method[J]. Automation of Electric Power Systems,2012,36(10):56-60.
- [9]胡非,刘志刚,何士玉,等.一种基于模型的配电网故障诊断搜 索算法[J].电力自动化设备,2013,33(1):81-90.
 HU Fei,LIU Zhigang,HE Shiyu,et al. Model based search al-

gorithm of fault diagnosis for distribution system[J]. Electric Power Automation Equipment,2013,33(1):81-90.

- [10] 关龙,刘志刚,徐建芳,等.基于模型的配电网故障诊断关键问题研究[J].电力系统保护与控制,2012,40(20):145-150.
 GUAN Long,LIU Zhigang,XU Jianfang, et al. Key issues with model based diagnosis in distribution network[J]. Power System Protection and Control,2012,40(20):145-150.
- [11] 关龙,刘志刚,何士玉,等. 离散二进制粒子群算法在基于模型 配电网故障诊断中的应用[J]. 电力自动化设备,2013,33(9): 89-92.

GUAN Long, LIU Zhigang, HE Shiyu, et al. Application of BP-SO algorithm in model based fault diagnosis of distribution network[J]. Electric Power Automation Equipment, 2013, 33(9): 89-92.

[12] 戴晨曦,刘志刚,胡柯挺,等. 基于模型与模糊 Petri 网融合的 高铁牵引变压器故障诊断[J]. 电力系统保护与控制,2016,44 (11):26-32.

DAI Chenxi, LIU Zhigang, HU Keting, et al. Fault diagnosis for traction transformer of high speed railway on the integration of model based diagnosis and fuzzy Petri nets[J]. Power System Protection and Control, 2016, 44(11):26-32.

- [13] HU Keting, LIU Zhigang, HUANG Ke, et al. Improved differential evolution algorithm of model-based diagnosis in traction substation fault diagnosis of high-speed railway[J]. IET Electrical Systems in Transportation, 2016,6(3):163-169.
- [14] 刘娟,欧阳丹彤,王艺源,等.结合特征学习的粒子群求解最小碰集方法[J].电子学报,2015,43(5):841-845.
 LIU Juan,OUYANG Dantong,WANG Yiyuan, et al. Computing minimal hitting sets with particle swarm optimization combined characteristics learning[J]. Acta Electronics Sinica, 2015,43(5):841-845.
- [15] GAO Song, DAI Chenxi, LIU Zhigang, et al. Application of BPSO with GA in model-based fault diagnosis of traction substation [C]//2014 IEEE Congress on Evolutionary Computation. Beijing, China: IEEE, 2014: 2063-2068.
- [16] 赵冬梅,张旭,魏娟,等. 以重现故障过程为目的的电网故障诊断[J]. 中国电机工程学报,2014,34(13):2116-2123.
 ZHAO Dongmei,ZHANG Xu,WEI Juan, et al. Power grid fault

diagnosis aiming at reproducing the fault process[J]. Proceedings of the CSEE, 2014, 34(13):2116-2123.

[17] 郭文鑫,文福拴,廖志伟,等. 计及保护和断路器误动与拒动的 电力系统故障诊断解析模型[J]. 电力系统自动化,2009,33 (24):6-10.

GUO Wenxin, WEN Fushuan, LIAO Zhiwei, et al. An analytic model for power system fault diagnosis with malfunctions of protective relays and circuit breakers taken into account [J]. Automation of Electric Power Systems, 2009, 33(24):6-10.

- [18] 何连杰,史常凯,闫卓,等.基于广义S变换能量相对熵的小电流接地系统故障区段定位方法[J].电工技术学报,2017,32(8):274-280.
 HE Lianjie, SHI Changkai, YAN Zhuo, et al. A fault section location method for small current neutral grounding system based on energy relative entropy of generalized S-transform [J]. Transactions of China Electrotechnical Society, 2017, 32(8):274-280.
- [19] 吴宁,许扬,陆于平.分布式发电条件下配电网故障区段定位 新算法[J].电力系统自动化,2009,33(14):77-82.
 WU Ning, XU Yang, LU Yuping. New fault section location algorithm for distribution network with DG[J]. Automation of Electric Power Systems,2009,33(14):77-82.
- [20] 李振兴,尹项根,张哲,等. 有限广域继电保护系统的分区原则 与实现方法[J]. 电力系统自动化,2010,34(19):48-52.
 LI Zhenxing, YIN Xianggen, ZHANG Zhe, et al. Zone division and implementation on limited wide area protection system[J].
 Automation of Electric Power Systems,2010,34(19):48-52.

作者简介:

王秋杰(1988—),男,湖北宜昌人,博 士研究生,研究方向电力人工智能、电力系 统稳定性分析(E-mail:84106438@qq.com); 金 涛(1976—),男,湖北宜昌人,研 究员,博士研究生导师,博士,研究方向为电 力系统稳定性分析、在线测量与信号处理、 新能源技术。

(编辑 任思思)

Model-based hierarchical diagnosis method for distribution network faults

WANG Qiujie¹, JIN Tao¹, MEI Lipeng², LIU Jun²

(1. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350116, China;

2. Jiujiang Power Supply Company, State Grid Jiangxi Electric Power Co., Ltd., Jiujiang 332000, China)

Abstract: In order to solve the problems of model-based diagnosis method for distribution network faults, such as slow diagnosis speed, low accuracy and low fault tolerance in diagnosis of multiple multi-phase faults, a model-based hierarchical diagnosis method for distribution network faults is proposed. From the aspect of diagnosis algorithm, the new fitness function and the search strategy of feature learning are used to improve the diagnosis speed and accuracy. In the diagnosis model, the single-layered single high-dimensional operations is transformed into two-layered multiple low-dimensional operations by a hierarchical approach, which further improves the diagnosis speed and accuracy. The fault tolerance ability of the first layer diagnosis is improved by defining the constraint relation of the equivalent components, and that of the second layer diagnosis is improved by using the redundancy relation of voltage constraints and current constraints. Numerical examples show that compared with other diagnosis methods, the speed of model-based hierarchical diagnosis method is greatly improved, the accuracy is always maintained near the ideal value, and the fault tolerance ability is obviously enhanced. In the fault diagnosis of large-scale distribution network, the model-based hierarchical diagnosis method has obvious advantages.

Key words: distribution network; fault diagnosis; model-based diagnosis; hierarchical diagnosis

附录 A

B 相元件集[L_{iB}, B_{iB}]和 C 相元件集[L_{iC}, B_{iC}]的电压和电流约束关系分别如式(A1) — (A3)和式 (A4) — (A6)所示。

$$U_{i+1B} - U_{iB} + Z_{iB}(I_{i+1B} + I_{i+2B}) = 0$$
(A1)

$$U_{i+2B} - U_{iB} + Z_{iB}(I_{i+1B} + I_{i+2B}) = 0$$

$$I_{i+1B} + I_{i+2B} - I_{iB} = 0$$
(A2)
(A3)
(A3)

$$I_{i+1B} + I_{i+2B} - I_{iB} = 0$$
(A3)

$$U_{i+1C} - U_{iC} + Z_{iC}(I_{i+1C} + I_{i+2C}) = 0$$
(A4)

$$U_{i+1C} - U_{iC} + Z_{iC}(I_{i+1C} + I_{i+2C}) = 0$$

$$U_{i+2C} - U_{iC} + Z_{iC}(I_{i+1C} + I_{i+2C}) = 0$$
(A4)
(A5)

$$_{i+2C} - U_{iC} + Z_{iC}(I_{i+1C} + I_{i+2C}) = 0$$
 (A3)

$$I_{i+1C} + I_{i+2C} - I_{iC} = 0$$
 (A6)

附录 B

图 B1 基于模型的分层诊断流程图

Fig.B1 Flowchart of model-based hierarchical diagnosis

序号	约束关系
1	$U_2 - U_1 + (I_2 + I_5)Z_1 = 0$, $U_5 - U_1 + (I_2 + I_5)Z_1 = 0$, $-I_1 + I_2 + I_5 = 0$
2	$U_4 - U_2 + I_4 (Z_2 + Z_3) = 0$, $-I_2 + I_4 = 0$
3	$U_6 - U_5 + (I_6 + I_9)Z_4 = 0, U_9 - U_5 + (I_6 + I_9)Z_4 = 0, -I_5 + I_6 + I_9 = 0$
4	$U_{8} - U_{6} + I_{8}(Z_{5} + Z_{6}) = 0 \ , -I_{6} + I_{8} = 0$
5	$U_{11} - U_9 + (I_{11} + I_{14})(Z_7 + Z_8) = 0$, $-I_9 + I_{11} + I_{14} = 0$
5	$U_{14} - U_9 + (I_{11} + I_{14})(Z_7 + Z_8) = 0$
6	$U_{13} - U_{11} + I_{13}(Z_9 + Z_{10}) = 0$, $-I_{11} + I_{13} = 0$

表 C1 第1 层约束关系

Table C1 First layer analytic redundancy relation

表 C2 第2 层诊断模型

系统	元件	信息测量点
S_1	$L_{\rm IA}$, $B_{\rm IA}$, $L_{\rm IB}$, $B_{\rm IB}$, $L_{\rm IC},~B_{\rm IC}$	M_1 , M_2 , M_5
S ₂	$L_{2A}, \ B_{2A}, \ L_{2B}, \ B_{2B}, \ L_{2C}, \ B_{2C}, \ L_{3A}, \ B_{3A}, \ L_{3B}, \ B_{3B}, \\ L_{3C}, \ B_{3C}$	M_2 , M_3 , M_4
S ₃	L_{4A} , B_{4A} , L_{4B} , B_{4B} , L_{4C} , B_{4C}	M ₅ , M ₆ , M ₉
S_4	$L_{5A}, \ B_{5A}, \ L_{5B}, \ B_{5B}, \ L_{5C}, \ B_{5C}, \ L_{6A}, \ B_{6A}, \ L_{6B}, \ B_{6B}, \\ L_{6C}, \ B_{6C}$	M ₆ , M ₇ , M ₈
S ₅	$L_{7A}, \ B_{7A}, \ L_{7B}, \ B_{7B}, \ L_{7C}, \ B_{7C}, \ L_{8A}, \ B_{8A}, \ L_{8B}, \ B_{8B}, \\ L_{8C}, \ B_{8C}$	M_9 , M_{10} , M_{11} , M_{14}
S ₆	L_{9A} , B_{9A} , L_{9B} , B_{9B} , L_{9C} , B_{9C} , L_{10A} , B_{10A} , L_{10B} , B_{10B} , L_{10C} , B_{10C}	M_{11} , M_{12} , M_{13}
\mathbf{S}_7	$\begin{array}{c} L_{11A}, \ B_{11A}, \ L_{11B}, \ B_{11B}, \ L_{11C}, \ B_{11C}, \ L_{12A}, \ B_{12A}, \ L_{12B}, \\\\ B_{12B}, \ L_{12C}, \ B_{12C}, \ L_{13A}, \ B_{13A}, \ L_{13B}, \ B_{13B}, \ L_{13C}, \ B_{13C}, \\\\ L_{14A}, \ B_{14A}, \ L_{14B}, \ B_{14B}, \ L_{14C}, \ B_{14C} \end{array}$	M_{14} , M_{15} , M_{16} , M_{17} , M_{18}

Ta	able C3 Analyti	c redundancy rela	ation of second layer	
系统	约束关系			
S ₁	$U_{2A}-U_{1A}+(I_{2A}+I_{1A}+I_{2A}+I_{1A}+I_{2A}+I_{2B}+I_{2B}+I_{2B}+I_{2B}+I_{2B}+I_{2C}-U_{1C}+(I_{2C}+I_{2C$	$ I_{5A} Z_{1A} = 0 \qquad U \\ I_{5A} = 0 \qquad U \\ I_{5B} Z_{1B} = 0 \qquad U \\ I_{5C} Z_{1C} = 0 \qquad U \\ I_{5C} = 0 \qquad U \\ I_{5C} = 0 \qquad U $	$U_{5A}-U_{1A}+(I_{2A}+I_{5A})Z_{1A}=0$ $U_{2B}-U_{1B}+(I_{2B}+I_{5B})Z_{1B}=0$ $-I_{1B}+I_{2B}+I_{5B}=0$ $U_{5C}-U_{1C}+(I_{2C}+I_{5C})Z_{1C}=0$	
	-110+120+	50-0		
	$U_{7A}-U_{6A}+I_7$ $U_{7B}-U_{6B}+I_7$	$_{A}Z_{5A}=0$ $_{B}Z_{5B}=0$	$-I_{6A}+I_{7A}=0$ $-I_{6B}+I_{7B}=0$	
S_3	$U_{7C}-U_{6C}+I_7$ $U_{8A}-U_{7A}+I_8$ $U_{8B}-U_{7B}+I_8$ $U_{8C}-U_{7C}+I_8$	$_{C}Z_{5C}=0$ $_{A}Z_{6A}=0$ $_{B}Z_{6B}=0$ $_{C}Z_{6C}=0$	$-I_{6C}+I_{7C}=0$ $-I_{7A}+I_{8A}=0$ $-I_{7B}+I_{8B}=0$ $-I_{7C}+I_{8C}=0$	
•••	•••		•••	
Ta	ble C4 Minimu	m conflict set can	ididates of each layer	
最小冲突集候选 包含元件		包含元件		
C _{FLMCS1} — 第1层 C _{FLMCS7}		$[\mathbf{R}_1], [\mathbf{R}_2], [\mathbf{R}_2]$	R_3], $[R_4]$, $[R_5]$, $[R_6]$, $[R_7]$	
	$C_{\rm SLMCS1}$	$[L_{1A}, B_{1A}], [L_1]$	$_{B}$, B_{1B}], $[L_{1C}$, B_{1C}]	
C _{SLMCS2}		$[L_{2A}, B_{2A}]$, $[L_{3A}, B_{3A}]$,	$[L_{2B}, B_{2B}]$, $[L_{2C}, B_{2C}]$ $[L_{3B}, B_{3B}]$, $[L_{3C}, B_{3C}]$	
	C _{SLMCS3}	$[L_{4A}, B_{4A}],$	$[\ L_{4B},\ B_{4B}]$, $[L_{4C},\ B_{4C}]$	
	$C_{ m SLMCS4}$	$[L_{5A}, B_{5A}], [L_{5B}, B_{5B}], [L_{5C}, B_{5C}]$ $[L_{6A}, B_{6A}], [L_{6B}, B_{6B}], [L_{6C}, B_{6C}]$		
第2层	C _{SLMCS5}	$\begin{bmatrix} L_{7A}, & B_{7A} \end{bmatrix}, \begin{bmatrix} L_{7B}, & B_{7B} \end{bmatrix}, \begin{bmatrix} L_{7C}, & B_{7C} \end{bmatrix}$ $\begin{bmatrix} L_{8A}, & B_{8A} \end{bmatrix}, \begin{bmatrix} L_{8B}, & B_{8B} \end{bmatrix}, \begin{bmatrix} L_{8C}, & B_{8C} \end{bmatrix}$		
	C _{SLMCS6}	$[L_{9A}, B_{9A}], [L_{9B}, B_{9B}], [L_{9C}, B_{9C}]$ $[L_{10A}, B_{10A}], [L_{10B}, B_{10B}], [L_{10C}, B$		
	C _{SLMCS7}	$ \begin{bmatrix} L_{11A}, & B_{11A} \end{bmatrix}, \\ \begin{bmatrix} L_{12A}, & B_{12A} \end{bmatrix}, \\ \begin{bmatrix} L_{13A}, & B_{13A} \end{bmatrix}, \\ \begin{bmatrix} L_{14A}, & B_{14A} \end{bmatrix}, $	$\begin{bmatrix} L_{11B}, B_{11B} \end{bmatrix}, \begin{bmatrix} L_{11C}, B_{11C} \end{bmatrix}$ $\begin{bmatrix} L_{12B}, B_{12B} \end{bmatrix}, \begin{bmatrix} L_{12C}, B_{12C} \end{bmatrix}$ $\begin{bmatrix} L_{13B}, B_{13B} \end{bmatrix}, \begin{bmatrix} L_{13C}, B_{13C} \end{bmatrix}$ $\begin{bmatrix} L_{14B}, B_{14B} \end{bmatrix}, \begin{bmatrix} L_{14C}, B_{14C} \end{bmatrix}$	

表 C3 第2 层约束关系

最小冲突集	相对残差	
候选	电压约束	电流约束
$C_{\rm FLMCSC1}$	0.0028	0.0083
C_{FLMCSC2}	1.0346	1.1957
C_{FLMCSC3}	0.0054	0.0079
$C_{\rm FLMCSC4}$	1.0454	1.1776
$C_{\rm FLMCSC5}$	0.0479	0.0141
$C_{\rm FLMCSC6}$	0.0335	0.0122
$C_{\rm FLMCSC7}$	0.1745	0.0091

表C5 第1层约束关系相对残差

Table C5 Relative residuals of first layer constraint relation

表 C6 子系统 S2 的相对残差

最小冲突集	相对残差	
候选	电压约束	电流约束
$C_{\rm SLMCS1}$	0.0046	0.0073
C _{SLMCS2}	0.0068	0.0086
C _{SLMCS3}	0.0078	0.0092
C _{SLMCS4}	1.0245	1.15464
C _{SLMCS5}	1.0464	1.21481
C _{SLMCS6}	1.0851	1.13464

Table C6 Relative residuals of subsystems $S_{\rm 2}$

表 C7 子系统 S4 的相对残差

Table C7 Relative residuals of S₄

最小冲突集	相对残差	
候选	电压约束	电流约束
$C_{\rm SLMCS1}$	0.0032	0.0153
$C_{\rm SLMCS2}$	0.0034	0.0143
$C_{ m SLMCS3}$	0.0029	0.0134
$C_{ m SLMCS4}$	1.0223	1.0243
$C_{\rm SLMCS5}$	1.0596	1.0382
$C_{\rm SLMCS6}$	1.0437	1.0343

表C8 第2 层最小冲突集

Table C8 Minimum conflict set candidates of second layer

第2层最小冲突集	包含元件
S _{SLMC2}	$[L_{3A},\ B_{3A}],\ [L_{3B},\ B_{3B}]$, $[L_{3C},\ B_{3C}]$
$S_{ m SLMC4}$	$[L_{6A}, B_{6A}], [L_{6B}, B_{6B}], [L_{6C}, B_{6C}]$

编号		具体包含的元件		
ç	S _{LMHS2}	$\begin{bmatrix} L_{3A}, L_{3B}, L_{3C} \end{bmatrix}, \begin{bmatrix} L_{3} \\ L_{3A}, L_{3B}, B_{3C} \end{bmatrix}, \begin{bmatrix} L_{3} \\ L_{3A}, L_{3B}, B_{3C} \end{bmatrix}, \begin{bmatrix} L_{3} \\ L_{3A}, L_{3B}, L_{3C} \end{bmatrix}, \begin{bmatrix} B_{3} \\ B_{3A}, L_{3B}, B_{3C} \end{bmatrix}, \begin{bmatrix} B_{3} \\ B_{3A}, L_{3B}, B_{3C} \end{bmatrix}, \begin{bmatrix} B_{3} \\ B_{3A}, B_{3B} \end{bmatrix}, \begin{bmatrix} B_{3} \\ B_{3} \end{bmatrix}, \begin{bmatrix} $	$\begin{bmatrix} A_{A}, B_{3B}, L_{3C} \end{bmatrix}$ $\begin{bmatrix} A_{A}, B_{3B}, B_{3C} \end{bmatrix}$	
JSLMH	S _{LMS4}	$\begin{bmatrix} L_{6A}, L_{6B}, L_{6C} \end{bmatrix}, \begin{bmatrix} L_{6} \\ L_{6A}, L_{6B}, B_{6C} \end{bmatrix}, \begin{bmatrix} L_{6} \\ R_{6A}, L_{6B}, R_{6C} \end{bmatrix}, \begin{bmatrix} R_{6} \\ R_{6A}, L_{6B}, R_{6C} \end{bmatrix}, \begin{bmatrix} R_{6} \\ R_{6A}, R_{6B}, R_{6C} \end{bmatrix}, \begin{bmatrix} R_{6} \\ R_{6A}, R_{6B}, R_{6C} \end{bmatrix}, \begin{bmatrix} R_{6} \\ R_{6} \\ R_{6} \\ R_{6} \end{bmatrix}, \begin{bmatrix} R_{6} \\ R_{6} \\ R_{6} \\ R_{6} \\ R_{6} \end{bmatrix}, \begin{bmatrix} R_{6} \\ R_{6$	$ \begin{array}{c} {}_{5A}, \ B_{6B}, \ L_{6C} \\ {}_{5A}, \ B_{6B}, \ B_{6C} \\ {}_{5A}, \ B_{6B}, \ L_{6C} \\ {}_{5A}, \ B_{6B}, \ B_{6C} \end{array} $	
表 C10 故障概率排序 Table C10 Fault probability sorting				
候道	违诊断	故障核	故障概率	
S _{SLMH2}	$S_{\rm LMHS4}$	S_{LMHS2}	S _{LMHS4}	
[L _{3A} , L _{3B} , L _{3C}]	[L _{6A} , L _{6B} , L _{6C}] 0.064	0.064	
$[L_{3A}, B_{3B}, L_{3C}]$	[L _{6A} , B _{6B} , L _{6C}] 0.016	0.016	
[L _{3A} , L _{3B} , B _{3C}]	[L _{6A} , L _{6B} , B _{6C}] 0.016	0.016	
$[B_{3A}, L_{3B}, L_{3C}]$	[B _{6A} , L _{6B} , L _{6C}] 0.016	0.016	
[L _{3A} , B _{3B} , B _{3C}]	[L _{6A} , B _{6B} , B _{6C}] 0.004	0.004	
[B _{3A} , B _{3B} , L _{3C}]	[B _{6A} , B _{6B} , L ₆₀] 0.004	0.004	
[B _{3A} , L _{3B} , B _{3C}]	[B _{6A} , L _{6B} , B ₆₀] 0.004	0.004	
[B _{3A} , B _{3B} , B _{3C}]	[B _{6A} , B _{6B} , B ₆₀	.] 0.001	0.001	

表 C9 第 2 层最小碰集 Table C9 Minimum conflict set candidates for second layer

表 C11 拓扑变化后各层最小冲突集候选 Table C11 Minimum conflict set candidates for all levels after topology change

各层最小冲突集候选		具体包含的元件	
第1层	C _{FLMCS1} —C _{FLMCS5}	$[\mathbf{R}_1], [\mathbf{R}_2'], [\mathbf{R}_3], [\mathbf{R}_4'], [\mathbf{R}_5']$	
第2层	$C_{\rm SLMCS1}$	$[L_{1A}, B_{1A}], [L_{1B}, B_{1B}], [L_{1C}, B_{1C}]$	
		$[L_{2A}, B_{2A}], [L_{2B}, B_{2B}], [L_{2C}, B_{2C}]$	
	C [°] SLMCS2	$[L_{3A}, B_{3A}], [L_{3B}, B_{3B}], [L_{3C}, B_{3C}]$	
		$[L_{9A}, B_{9A}], [L_{9B}, B_{9B}], [L_{9C}, B_{9C}]$	
		$[L_{10A}, B_{10A}], [L_{10B}, B_{10B}], [L_{10C}, B_{10C}]$	
	C _{SLMCS3}	$[L_{4A}, B_{4A}], [L_{4B}, B_{4B}], [L_{4C}, B_{4C}]$	
		$[L_{5A}, B_{5A}], [L_{5B}, B_{5B}], [L_{5C}, B_{5C}]$	
		$[L_{6A}, \ B_{6A}], \ [L_{6B}, \ B_{6B}], \ [\ L_{6C}, \ B_{6C}]$	
	C [°] SLMCS4	$[L_{13A}, B_{13A}], [L_{13B}, B_{13B}], [L_{13C}, B_{13C}]$	
		$[L_{14A}, \ B_{14A}], \ [L_{14B}, \ B_{14B}], \ [\ L_{14C}, \ B_{14C}]$	
	C [°] SLMCS5	$[L_{7A}, B_{7A}], [L_{7B}, B_{7B}], [L_{7C}, B_{7C}]$	
		$[L_{8A}, B_{8A}], [L_{8B}, B_{8B}], [L_{8C}, B_{8C}]$	
		$[L_{11A}, B_{11A}], [L_{11B}, B_{11B}], [L_{11C}, B_{11C}]$	
		$[L_{12A}, \ B_{12A}], \ [L_{12B}, \ B_{12B}], \ [L_{12C}, \ B_{12C}]$	