经柔性直流接人的大规模直驱风电场 等效建模与小干扰稳定性分析

任必兴^{1,2},孙 蓉¹,李 强¹,甘德强³,周 前¹,汪成根¹ (1. 国网江苏省电力有限公司电力科学研究院,江苏 南京 211103; 2. 国网江苏省电力有限公司,江苏 南京 210024;3. 浙江大学 电气工程学院,浙江 杭州 310027)

摘要:含多台风机的大规模风电场经柔性直流接入交流系统的详细模型阶数过高,对小干扰稳定性分析和失 稳机理研究提出了挑战。为此,建立了风电场经柔性直流接入交流系统的开环、闭环线性化状态空间模型。 基于风电场开环状态空间模型及风电场节点电压电流关系,将全阶风电场模型通过单台风机动态及交流拓 扑信息矩阵进行等效,并分析了风机输出功率、风机接入位置、风电场拓扑结构和风机数增加对风电场振荡 模式阻尼的影响。基于风电场降阶模型构建了风电-柔性直流系统的闭环互联模型,并分析了当风机数增加 时两子系统间可能存在的强动态交互作用对闭环系统小干扰稳定性的影响。研究表明当接入风机数增加 时,风电场主导振荡模式阻尼降低,当接近于柔性直流整流器的一个开环振荡模式,此时模式谐振诱发强动 态交互作用的发生可能导致系统失稳。

关键词:柔性直流输电;大规模直驱风电场;等效模型;动态交互作用;小干扰稳定性分析 中图分类号:TM 614;TM 712 ________文献标志码:A _______DOI:10.16081/j.epae.202203023

0 引言

随着风机装机容量和风电场规模的不断扩大, 风电场采用柔性直流输电(VSC-HVDC)接入电网相 较传统采用晶闸管换流器接入电网更适用于远距 离、大容量的电能输送^[1]。大规模风电并网可能导 致的振荡失稳问题^[2]给电力系统安全稳定运行带来 了挑战。良好的稳定特性是电力系统运行^[3]的基本 要求,当前稳定性研究主要包含小干扰稳定性^[4]和 大干扰稳定性^[5]分析2类,稳定机理分析以小干扰 稳定性分析为主。此外风电场单机容量过低与模型 阶数过高的矛盾^[6]导致基于详细动态模型的数值分 析常不能满足实际分析的需求^[7]。因此,需对大规 模风电场-柔性直流系统建立简化等效模型并分析 相应的稳定机理。

目前,新能源等值研究集中于新能源机组分群 聚类和同类型机组聚合等值两方面^[8],由同类型机 组构成的风电场等值简化常采用单机等值模型和双 机等值模型,其中单机等值是采用一台等值风机和 等效输出阻抗表示多台同类型的风机。现有等值研 究常采用风速、接入位置等因素^[9]作为同步等值的 依据,采用容量加权平均算法获取等值风机的参数。 后续研究提出参数辨识方法如采用智能优化算法^[10] 提高单机等值模型的准确度,目的是解决等值前

收稿日期:2021-05-06;修回日期:2022-01-25 在线出版日期:2022-02-23

基金项目:国网江苏省电力有限公司科技项目(J2020129) Project supported by the Science and Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.(J2020129) 后忽略风机间动态差异导致结论不准确的问题。文献[11-12]分别对比了单机等值和多机等值方法和详细模型的分析误差,指出目前的等值建模在机理分析和准确性方面均需要进行改进。

风电机组和外部接入系统的动态环节间的交互 作用导致系统失稳的情况已被诸多文献提及,研究 发现单风机-弱电网[13]和多风机-多换流器系统[14]均 存在强交互作用导致系统失稳的风险。强动态交互 作用现象的出现,最初是由于多机电力系统中部分 低频振荡失稳难以用传统阻尼转矩法进行解释[15], 由 Ian Dobson 通过数学方法^[16]证明了"振动模式的 接近会导致其中一个模式的阻尼显著降低"。随着 交流系统规模的扩大以及电力电子化程度的提升, 该现象在纯交流系统、交直流混联系统、直流系统[17] 以及微电网系统^[18]中被观测到,是实际电力系统中 较为普遍存在的一种现象。文献[19]基于阻抗模型 的频率分析法量化子系统间交互作用对稳定性的影 响,并指出风机接入台数增多以及电网连接阻抗增 大会对系统失稳造成不利影响。模式分析法应用在 分析直驱风机(PMSG)、双馈风机(DFIG)、柔性直流输 电和锁相环(PLL)动态与电力系统间开环模式谐振 时^[20],构建闭环互联模型,根据子系统传递函数的留 数信息量化动态单元间的交互作用强度。现有文献 在研究场-网动态交互作用时,风电场通常采用单机 或双机等值模型,针对风机间交互作用导致风电场 和柔性直流系统间强动态交互的分析较少;在研究 风机间动态交互时,通常忽略外部系统动态,如等效 为无穷大母线[7],较少考虑风电场与外部柔性直流 系统间可能存在的强动态交互作用。总之,目前大 规模风电并网电力系统稳定性研究主要有2种方法:一是频率域的阻抗分析法,二是我国学者在国际上首次提出的时间域开环模式谐振分析方法^[21]。而对于经交流接入的风电场的稳定性研究,文献[22] 通过推导风电场小干扰稳定极限,从理论上揭示了风电场小干扰失稳的机理和一般规律,开辟了研究 风电场小干扰稳定性的新途径。

在文献[21-22]的基础上,本文针对风电场经柔 性直流接入大电网的系统,分别构建风电场子系统 和柔性直流子系统的闭环互联模型。在风电场子系 统建模中应用单机等值的思想,构建大规模风电场 的简化等效模型,试图用单台风机的动态特性和风 电场拓扑信息来估计整个风电场的开环动态特性; 并根据等效模型给出扩大风电场运行稳定域的稳定 性增强方法。此外,基于风电场-柔性直流的互联系 统,分析了在风机数增加时子系统间强交互作用导 致失稳的潜在风险,并基于文中的机理分析给出相 应的稳定性增强措施。本文主要创新点如下:

1)采用单机等效模型对大规模风电场进行降阶 处理,通过参考风机的选择与交流拓扑信息矩阵对 风电场动态特性进行简化计算;

2)将开环模式分析理论应用到风电场-柔性直流系统,基于所采用的单机等效模型,在考虑风机间交互作用的同时,分析了风电场与柔性直流子系统间强交互作用导致系统失稳的机理。

1 风电场经柔性直流输电接入交流系统建模

风电场经柔性直流输电接入交流电网的结构示 意如图1所示,图中风机通过风电场交流拓扑网络 汇聚到公共节点(PCC),经整流器、高压直流输电线 路和逆变器接入交流系统。

图1 风电场经柔性直流输电接入交流电力系统示意图

Fig.1 Schematic diagram of wind farm connected to AC power system via VSC-HVDC

1.1 柔性直流输电系统建模

风电场侧整流器与风电场直接相连,控制目标 是维持风电场出口节点的交流母线电压恒定,其端 口线路和控制结构如附录A图A1所示。逆变器采 用定直流电压 / 定无功控制,在维持直流输电线路 电压稳定的同时为交流系统提供无功支撑。

风电场PCC至整流器的线路电压电流方程如下:

$$\begin{cases} L_{c} di_{sd}/dt = \omega L_{c} i_{sq} + u_{id} - u_{ud} \\ L_{c} di_{sq}/dt = -\omega L_{c} i_{sd} + u_{iq} - u_{uq} \\ C_{f} du_{ud}/dt = \omega C_{f} u_{uq} + i_{sd} - i_{pccd} \\ C_{f} du_{uq}/dt = -\omega C_{f} u_{ud} + i_{sq} - i_{pccq} \end{cases}$$
(1)

式中: L_c 为整流器端口电感; C_f 为滤波电容; i_{peed} 、 i_{peeq} 、 i_{peeq} 、 j_{peed} 、 i_{peed} 、 i_{peed} 、 j_{peed} $j_$

附录A图A1(b)所示控制系统外环d轴采用定 有功功率、q轴采用定交流电压的解耦控制,以维持 风电场PCC交流电压的稳定;内环采用PI控制。整 流器的动态数学模型如下:

$$\begin{cases} dx_{1}/dt = P^{\text{ref}} - P, \ dx_{2}/dt = \left| u_{1}^{\text{ref}} \right| - \left| u_{1} \right| \\ dx_{3}/dt = i_{sd}^{\text{ref}} - i_{sd}, \ dx_{4}/dt = i_{sq}^{\text{ref}} - i_{sq} \end{cases}$$

$$\begin{cases} i_{sd}^{\text{ref}} = k_{p1} \left(P^{\text{ref}} - P \right) + k_{i1}x_{1} \\ i_{sq}^{\text{ref}} = k_{p2} \left(\left| u_{1}^{\text{ref}} \right| - \left| u_{1} \right| \right) + k_{i2}x_{2} \\ u_{id} = u_{1d} + k_{p3} \left(i_{sd}^{\text{ref}} - i_{sd} \right) + k_{i3}x_{3} - \omega L_{c}i_{sq} \\ u_{ig} = u_{iq} + k_{p4} \left(i_{sd}^{\text{ref}} - i_{sq} \right) + k_{i4}x_{4} + \omega L_{c}i_{sd} \end{cases}$$

$$(3)$$

式中: $x_1 - x_4$ 为整流器 PI 控制环节的积分项输出状态量; $u_1 = u_{ud} + ju_{u_d}$ 为风电场出口节点电压;P为直流 传输有功功率; $k_{p1} - k_{p4}$ 、 $k_{i1} - k_{i4}$ 分别为图 A1(b)中直 流输电各控制器的比例、积分控制参数;上标 ref表 示对应变量的参考值。整流器同步 PLL 以 PCC 相角 为输入,其输出相角供换流器派克变化使用。PLL 结构如附录A图 A1(c)所示,对应数学模型如下:

$$\begin{cases} dx_{PLL}/dt = u_{ud0}k_i^{PLL}(\theta_i - \theta_{PLL}) \\ d\theta_{PLL}/dt = x_{PLL} + u_{ud0}k_p^{PLL}(\theta_i - \theta_{PLL}) \end{cases}$$
(4)

式中:*x*_{PLL}为PLL的积分控制环节输出量;θ_i和θ_{PLL}分 别为PLL的输入和输出相角;*k*^{PLL},*k*^{PLL}分别为PLL的 比例、积分控制参数;下标0表示对应变量的稳态 值。假设逆变器侧接入强交流电网,现有研究常忽 略逆变器对整流侧的影响^[23],可以将其等效为一个 恒定直流电压源。直流输电系统的动态模型如下:

$$\begin{cases}
L_{dc} di_{dc}/dt = u_{dc} - u_{dc1} - R_{dc} i_{dc} \\
C_{dc1} du_{dc1}/dt = u_{dc1} i_{dc} - \frac{3}{2} \left(u_{id} i_{sd} + u_{iq} i_{sq} \right)
\end{cases}$$
(5)

式中: L_{de} 、 R_{de} 分别为直流线路电感、电阻; C_{del} 为整流 侧电容; i_{de} 为直流电流; u_{del} 、 u_{de} 分别为整流侧和逆变 侧直流电压。

将式(1)—(5)线性化可得柔性直流输电系统的 状态空间模型如下:

$$\begin{cases} s\Delta X_{d} = A_{d}\Delta X_{d} + B_{d}\Delta I_{pcc} \\ \Delta U_{t} = C_{d}\Delta X_{d} \end{cases}$$
(6)

式中: ΔX_{d} 为柔性直流输电系统全部状态变量; $\Delta I_{pcc} = -[\Delta i_{sd} \Delta i_{sq}]^{T}$ 为风电场PCC注入电流变量; $\Delta U_{t} = [\Delta u_{ud} \Delta u_{uq}]^{T}$ 为风电场出口节点电压状态变量; A_{d} 、 B_{d} 、 C_{d} 分别为柔性直流输电系统的状态矩阵、输入矩阵、输出矩阵。可见柔性直流子系统以风电场输出 电流为输入、风电场出口节点电压为输出。

1.2 直驱风电场建模

风电场中单台 PMSG 的建模如附录 B 所示。风电场中第 k 台风机的线性化状态空间模型如下:

$$\begin{cases} s\Delta X_{wk} = A_{wk}\Delta X_{wk} + B_{wk}\Delta U_{wk} \\ \Delta I_{wk} = C_{wk}\Delta X_{wk} \end{cases}$$
(7)

式中: ΔX_{wk} 为第k台风机全部状态变量; A_{wk} 、 B_{wk} 、 C_{wk} 分别为第k台风机的状态矩阵、输入矩阵、输出矩阵; ΔU_{wk} 为第k台风机接入系统的节点电压变量; ΔI_{wk} 为风机注入风电场交流拓扑的电流变量。据此,可建 立含N台PMSG的风电场全阶模型如式(8)所示。

$$\begin{cases} s\Delta X_{w} = A_{w}\Delta X_{w} + B_{w}\Delta U_{w} \\ \Delta I_{w} = C_{w}\Delta X_{w} \end{cases}$$
(8)

式中: $\Delta X_{w} = [\Delta X_{w1} \Delta X_{w2} \cdots \Delta X_{wN}]$ 「为风电场全部状态变量; $A_{w} = \text{diag} \{A_{w1}, A_{w2}, \cdots, A_{wN}\}, B_{w}, C_{w}$ 分别为风电场的状态矩阵、输入矩阵、输出矩阵; $\Delta U_{w} = [\Delta U_{w1}]$ $\Delta U_{w2} \cdots \Delta U_{wN}$ 」「为风电场接入系统的节点电压变量; $\Delta I_{w} = [\Delta I_{w1} \Delta I_{w2} \cdots \Delta I_{wN}]$ 「为风电场接入系统的电流变量。

节点电压和节点注入电流关系如式(9)所示。

$$\begin{bmatrix} \boldsymbol{Y}_{w11} & \boldsymbol{Y}_{w12} & \boldsymbol{0} \\ \boldsymbol{Y}_{w21} & \boldsymbol{Y}_{w22} & \boldsymbol{Y}_{w23} \\ \boldsymbol{0} & \boldsymbol{Y}_{w2} & \boldsymbol{Y}_{w23} \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{U}_{w} \\ \Delta \boldsymbol{U}_{pcc} \\ \Delta \boldsymbol{U} \end{bmatrix} = \begin{bmatrix} \Delta \boldsymbol{I}_{w} \\ \boldsymbol{0} \\ -\Delta \boldsymbol{I} \end{bmatrix}$$
(9)

式中: ΔU_{pee} 为风电场PCC电压变量; Y_{w11} 、 Y_{w12} 、 Y_{w21} 、 Y_{w22} 、 Y_{w23} 、 Y_{w33} 、 Y_{w33} 为风电场网络拓扑分块导纳矩阵。根据式(9)有:

$$\begin{cases} \Delta U_{w} = Y_{w11}^{-1} \left(\Delta I_{w} - Y_{w12} \Delta U_{pcc} \right) \\ Y_{w32} \Delta U_{pcc} + Y_{w33} \Delta U_{t} = -\Delta I_{pcc} = -\sum \Delta I_{wk} \end{cases}$$
(10)

将式(10)代入式(8)可以得到含*N*台PMSG的 风电并网系统全阶状态空间模型如式(11)所示。

$$\begin{cases} s\Delta X_{w} = A_{wf}\Delta X_{w} + B_{wf}\Delta U_{t} \\ \Delta I_{pcc} = \sum \Delta I_{wk} = C_{wf}\Delta X_{w} \end{cases}$$
(11)

式中: $A_{wf} = A_w + B_w Y_{w11}^{-1} C_w + B_w Y_{w11}^{-1} Y_{w12} Y_{w32}^{-1} \sum C_{wk}; B_{wf} = B_w Y_{w11}^{-1} Y_{w12} Y_{w32}^{-1} Y_{w33}; C_{wf}$ 为输出矩阵。

可见风电场子系统以 ΔU_1 为输入、 ΔI_{pee} 为输出。

1.3 风电场-柔性直流全系统互联模型

根据式(6)、(11)可构建风电场-柔性直流系统 互联模型如图2所示。图中, $T(s)=C_{d}(sI-A_{d})^{-1}B_{d}$ 为 柔性直流子系统传递函数; $W(s)=C_{wf}(sI-A_{wf})^{-1}B_{wf}$ 为 风电场子系统传递函数。风电场经柔性直流系统并 网的模型如式(12)所示。

$$s\Delta X = A\Delta X \qquad (12)$$
$$\Delta X = \begin{bmatrix} \Delta X_{w} \\ \Delta X_{d} \end{bmatrix}, \quad A = \begin{bmatrix} A_{wf} & B_{wf}C_{d} \\ B_{d}C_{wf} & A_{d} \end{bmatrix}$$

2 风电场等效模型与交互作用分析

式(7)所示风机状态空间模型和式(11)所示风

图2 风电场-柔性直流闭环互联系统

Fig.2 Wind farm and VSC-HVDC closed-loop interconnected system

电场状态空间模型阶数较高,较难获得一般性的机 理推论,需要采用恰当的假设或降阶模型,对风电场 子系统进行等效处理。本节首先采用2种常见拓扑 结构,推导风电场的等效简化方法;然后分析子系统 间强交互作用导致失稳的机理;最后给出稳定性分 析方法的应用步骤。

2.1 风电场等效模型

为不失一般性,考虑风电场采用串联拓扑和并 联拓扑2种结构见图3,分析如何对式(11)所示的高 阶风电场模型进行等效处理。图中,*Z*_L=*R*_L+j*X*_L为 单位长度交流线路阻抗;*l*₁₂、*l*₂₃、…,*l*₄₅为线路长度。

图3 风电场典型连接结构

Fig.3 Typical connecting structure of wind farm

针对图3(a)所示的串联结构,风机端口电压电 流关系可写成式(13)所示的形式。

$$\begin{cases} \Delta U_{w1} = (l_{12} + l_{23} + l_{34}) Z_{L} \Delta I_{w1} + (l_{23} + l_{34}) Z_{L} \Delta I_{w2} + \\ l_{34} Z_{L} \Delta I_{w3} + \Delta U_{pcc} \\ \Delta U_{w2} = (l_{23} + l_{34}) Z_{L} \Delta I_{w1} + (l_{23} + l_{34}) Z_{L} \Delta I_{w2} + \\ l_{34} Z_{L} \Delta I_{w3} + \Delta U_{pcc} \\ \Delta U_{w3} = l_{34} Z_{L} \Delta I_{w1} + l_{34} Z_{L} \Delta I_{w2} + l_{34} Z_{L} \Delta I_{w3} + \Delta U_{pcc} \\ \Delta U_{pcc} = l_{45} Z_{L} \sum_{k=1}^{3} \Delta I_{wk} + \Delta U_{t} \\ \Re \vec{\pi} (13) \regnededtequark$$

$$\begin{cases} s\Delta X_{w1} = A_{w1}\Delta X_{w1} + \Delta U_{t} + \\ (l_{12} + l_{23} + l_{34} + l_{45})B_{w1}Z_{L}C_{w1}\Delta X_{w1} + \\ (l_{23} + l_{34} + l_{45})B_{w1}Z_{L}C_{w2}\Delta X_{w2} + \\ (l_{34} + l_{45})B_{w1}Z_{L}C_{w3}\Delta X_{w3} \\ s\Delta X_{w2} = A_{w2}\Delta X_{w2} + \Delta U_{t} + \\ (l_{23} + l_{34} + l_{45})B_{w2}Z_{L}C_{w1}\Delta X_{w1} + \\ (l_{23} + l_{34} + l_{45})B_{w2}Z_{L}C_{w2}\Delta X_{w2} + \\ (l_{34} + l_{45})B_{w2}Z_{L}C_{w3}\Delta X_{w3} \\ s\Delta X_{w3} = A_{w3}\Delta X_{w3} + \Delta U_{t} + \\ (l_{34} + l_{45})B_{w3}Z_{L}C_{w1}\Delta X_{w1} + \\ (l_{34} + l_{45})B_{w3}Z_{L}C_{w2}\Delta X_{w2} + \\ (l_{34} + l_{45})B_{w3}Z_{L}C_{w3}\Delta X_{w3} \end{cases}$$
(14)

忽略风机间的动态差异,取第r台风机的模型为 参考,有 $A_{wk}=A_{wr}, B_{wk}=B_{wr}, C_{wk}=C_{wr}, 其中<math>k=1, 2, \dots, N_{\circ}$ 将式(14)代入式(11)可以得到风电场子系统特征矩 阵如下:

$$\boldsymbol{A}_{wf} = \operatorname{diag} \left[\boldsymbol{A}_{wr} \right] + \boldsymbol{L}_{s} \operatorname{diag} \left[\boldsymbol{B}_{wr} \right] \boldsymbol{Z}_{L} \operatorname{diag} \left[\boldsymbol{C}_{wr} \right] \quad (15)$$

$$\boldsymbol{L}_{s} = \begin{bmatrix} l_{12} + l_{23} + l_{34} + l_{45} & l_{23} + l_{34} + l_{45} & l_{34} + l_{45} \\ l_{23} + l_{34} + l_{45} & l_{23} + l_{34} + l_{45} & l_{34} + l_{45} \\ l_{34} + l_{45} & l_{34} + l_{45} & l_{34} + l_{45} \end{bmatrix} \boldsymbol{I}$$

$$\boldsymbol{Z}_{L} = \begin{bmatrix} \boldsymbol{R}_{L} & -\boldsymbol{X}_{L} \\ \boldsymbol{X}_{L} & \boldsymbol{R}_{L} \end{bmatrix}$$

构造相似变换矩阵 P_{N} 和 P_{N}^{-1} ,使其满足:

$$\begin{cases} \boldsymbol{P}_{\mathrm{N}}\boldsymbol{P}_{\mathrm{N}}^{-1} = \boldsymbol{I}_{\mathrm{N}} \\ \boldsymbol{P}_{\mathrm{N}}\boldsymbol{L}_{s}\boldsymbol{P}_{\mathrm{N}}^{-1} = \mathrm{diag}\left[\lambda_{1k}\right] \quad k = 1, 2, \cdots, N \end{cases}$$
(16)

式中: I_{N} 为单位矩阵; λ_{Ik} 为第k台风机的特征值。

则式(15)所示风电场子系统状态特征矩阵可等 效为:

$$P_{N}\boldsymbol{A}_{wf}\boldsymbol{P}_{N}^{-1} = \text{diag}\left[\boldsymbol{A}_{wr} + \boldsymbol{\lambda}_{Lk}\boldsymbol{B}_{wr}\boldsymbol{Z}_{L}\boldsymbol{C}_{wr}\right]$$

$$k = 1, 2, \cdots, N \qquad (17)$$

类似地,针对图3(b)所示采用并联结构的风电场,风机端口电压电流关系可写成式(18)所示的 形式。

$$\begin{cases} \Delta U_{w1} = l_{14} Z_{L} \Delta I_{w1} + \Delta U_{pcc} \\ \Delta U_{w2} = l_{24} Z_{L} \Delta I_{w2} + \Delta U_{pcc} \\ \Delta U_{w3} = l_{34} Z_{L} \Delta I_{w3} + \Delta U_{pcc} \end{cases}$$
(18)
$$\Delta U_{pcc} = l_{45} Z_{L} \sum_{k=1}^{3} \Delta I_{wk} + \Delta U_{t} \\ \Re \overrightarrow{\mathbf{x}} (18) \Re \overrightarrow{\mathbf{x}} (7) \overrightarrow{\mathbf{n}} \cancel{\mathbf{\beta}} : \\ (s \Delta X_{w1} = A_{w1} \Delta X_{w1} + (l_{14} + l_{45}) B_{w1} Z_{L} C_{w1} \Delta X_{w1} + l_{45} B_{w1} Z_{L} C_{w2} \Delta X_{w2} + l_{45} B_{w1} Z_{L} C_{w3} \Delta X_{w3} + \Delta U_{t} \\ s \Delta X_{w2} = A_{w2} \Delta X_{w2} + (l_{24} + l_{45}) B_{w2} Z_{L} C_{w3} \Delta X_{w3} + \Delta U_{t} \end{cases}$$
(19)

$$s\Delta X_{w3} = A_{w3}\Delta X_{w3} + (l_{34} + l_{45})B_{w3}Z_{L}C_{w3}\Delta X_{w3} + l_{45}B_{w3}Z_{L}C_{w1}\Delta X_{w1} + l_{45}B_{w3}Z_{L}C_{w2}\Delta X_{w2} + \Delta U_{1}$$

式(19)对应的风电场子系统状态矩阵中 L_{s} 为:
$$L_{s} = \begin{bmatrix} l_{14} + l_{45} & l_{45} & l_{45} \\ l_{45} & l_{24} + l_{45} & l_{45} \\ l_{45} & l_{45} & l_{24} + l_{45} \end{bmatrix} I$$

可见采用并联结构的风电场,其子系统特征矩阵仍可采用式(17)所示的表达形式,即大规模风电场的状态特征矩阵可通过选取参考风机及风电场线路拓扑结构信息进行估计。

在风电场内部联络线较短、风机输出电压波动 较小的情况下,忽略风电场线路动态对等效建模结 果的影响有限^[7]。当交流线路动态不可被忽略时, 风电场子系统等效建模推导过程见附录C,可将风 电场子系统等效为式(C12)所示的形式。对比式 (15)与式(C12),可发现无论是否考虑风电场交流 拓扑线路动态,均可将风电场子系统的状态空间模 型通过矩阵相似变换化简为相似的形式,即可通过 参考风机的开环动态特性和交流网络阻抗矩阵估计 风电场子系统稳定特性。

上述推导为了表达简洁,忽略了风机间的动态 特性差异。在实际运行中,风电场中风机的工况,可 能由于风速不同导致输出功率存在差异^[24]、空间分 布导致端口电压存在差异等原因,存在较大差别。 此时参考风机的选择需要保证式(15)中的估计结果 能够包含风电场动态特性最差的情况^[22],以满足系 统稳定性判断的要求。下面通过图4所示的模式计 算结果相对关系示意图进行简要说明。

图4 模式计算结果相对关系示意图

采用式(8)所示的风电场全阶模型计算得到的 振荡模式在复平面上的分布区域用 O_F 表示,如图4 中灰色区域所示;采用式(15)所示的降阶模型计算 得到的振荡模式在复平面上的分布大致有 $O_{R1}-O_{R3}$ 3种情形,取决于不同的参考机选择。当选取开环 稳态特性较好的风机做参考机时,模式结果如 O_{R1} (情形1)或 O_{R2} (情形2)所示,此时降阶后的计算结 果无法包含风电场子系统振荡特性较差的情况,用 于判断系统稳定性会存在较大的误差;若选取开环 稳态特性较差的风机做参考机,计算结果如 O_{R3} (情 形3)所示,能够包含风电场阻尼最低的振荡模式, 此时若等效降阶结果是稳定的,则对应风电场全阶 模型的计算结果^[22]也必然是稳定的。

为保证采用降阶模型进行稳定性分析的有效 性,参考风机的选择应遵循如下原则:将该风机参数 信息代入式(17)中,求得等效模型的主导振荡模式有

着最差的阻尼。换言之,选择使等效模型稳定性最差的那台风机做参考机,能够保证稳定分析的有效性。

2.2 开闭环互联模型及稳定性分析

风电场经柔性直流输电接入交流电网互联系统 模型如图2所示,可见闭环互联系统稳定性由子系 统开环稳定性及子系统间交互作用所决定。当高压 直流输电换流器控制理想即 $\Delta U_1=0$ 时,图2所示的 互联系统开环,此时系统稳定性由开环子系统稳定 性所决定。针对开环子系统稳定性的研究集中于风 电场结构、风机数量和其他参数对风电场开环子系 统稳定性的影响分析。

当 ΔU_{ι} ≠0时,图2所示的互联系统闭环,取传递 函数 W(s)的复极点 λ_w ,对应风电场子系统开环特 征矩阵 A_{wt} 的特征值;取传递函数 T(s)复极点 λ_{τ} ,对 应柔性直流子系统开环特征矩阵 A_{d} 的特征值。互 联系统特征方程如式(20)所示。

$$1 = W(s)T(s) \tag{20}$$

风电场子系统模式 λ_w 对应闭环振荡模式 $\hat{\lambda}_w$, 以及柔性直流子系统振荡模式 $\lambda_{\rm T}$ 对应闭环振荡模 式 $\hat{\lambda}_{\rm T}$ 为式(12)中矩阵A的特征值,开闭环模式的差 值可反映场-网交互作用对稳定性的影响。子系统 开环传递函数可写为:

$$W(s) = \sum_{i=1}^{15N} \frac{R_{Wi}}{s - \lambda_{Wi}} + d_{W}, \quad T(s) = \sum_{i=1}^{M} \frac{R_{Ti}}{s - \lambda_{Ti}} + d_{T} \quad (21)$$

式中: $\lambda_{wi}(i=1,2,...,15N)$ 为风电场子系统的开环 振荡模式, $R_{wi}(i=1,2,...,15N)$ 为对应振荡模式的 留数,15N为风电场子系统的阶数; $\lambda_{Ti}(i=1,2,...,M)$ 为柔性直流子系统的开环振荡模式, $R_{Ti}(i=1,2,...,M)$ 为对应振荡模式的留数,M为柔 性直流子系统的阶数; d_w 和 d_T 为常数项。取闭环系 统特征方程的一个解 $s=\hat{\lambda}_w$,将式(21)代入式(20)所 示的闭环特征方程可得:

$$1 = \left(\sum_{i=1}^{15N} \frac{R_{Wi}}{\hat{\lambda}_{W} - \lambda_{Wi}} + d_{W}\right) \left(\sum_{i=1}^{M} \frac{R_{Ti}}{\hat{\lambda}_{W} - \lambda_{Ti}} + d_{T}\right) \quad (22)$$

在式(22)等号两边同乘
$$(\hat{\lambda}_{w} - \lambda_{w_{i}})^{2}$$
可得:

$$\left(\hat{\lambda}_{W} - \lambda_{Wi}\right)^{2} = \left[R_{Wi} + \left(\hat{\lambda}_{W} - \lambda_{Wi}\right)\left(\sum_{k=1}^{15N} \frac{R_{Wk}}{\hat{\lambda}_{W} - \lambda_{Wk}} + d_{W}\right)\right] \times \left[R_{Ti}\frac{\hat{\lambda}_{W} - \lambda_{Wi}}{\hat{\lambda}_{W} - \lambda_{Ti}} + \left(\hat{\lambda}_{W} - \lambda_{Wi}\right)\left(\sum_{k=1}^{M} \frac{R_{Tk}}{\hat{\lambda}_{W} - \lambda_{Tk}} + d_{T}\right)\right] = F\left(\hat{\lambda}_{W}\right)$$

$$(23)$$

当λ_{wi}≈λ_π时,子系统开环模式较为接近,子系统间发生强动态交互作用,式(23)可简化为:

$$\lim_{\lambda_{\mathrm{W}i} \to \lambda_{\mathrm{T}i}} \Delta \lambda_{\mathrm{W}} = \sqrt{\left(\hat{\lambda}_{\mathrm{W}} - \lambda_{\mathrm{W}i}\right)^2} \approx \pm \sqrt{R_{\mathrm{W}i}R_{\mathrm{T}i}} \qquad (24)$$

类似地,可求得柔性直流子系统开闭环振荡模 式间的差值如式(25)所示。

$$\lim_{\lambda_{w_i} \to \lambda_{T_i}} \Delta \lambda_{T} = \sqrt{\left(\hat{\lambda}_{T} - \lambda_{T_i}\right)^2} \approx \pm \sqrt{R_{w_i}R_{T_i}} \qquad (25)$$

可见在开环模式接近的条件下,子系统间存在 的交互作用会导致对应的闭环振荡模式在复平面上 向着相反的方向移动。

$$\left| f_{\text{real}} \right| \sqrt{R_{\text{W}i} R_{\text{T}i}} \left| < f_{\text{real}} \right| \lambda_{\text{W}i} \left| \overrightarrow{\mathfrak{R}} f_{\text{real}} \right| \sqrt{R_{\text{W}i} R_{\text{T}i}} \left| < f_{\text{real}} \right| \lambda_{\text{T}i} \right|$$

$$(26)$$

式中:freal表示相应特征值的实部。

闭环互联系统是否失稳,取决于阻尼降低程度(交互作用强度)与开环模式阻尼间的相对关系。当交互作用强度大于开环模式阻尼,即不满足式(26)时,闭环系统存在失稳的风险。上述推导基于式(23)中 $F(\hat{\lambda}_w)$ 的泰勒展开式,忽略高阶项得 $F(\hat{\lambda}_w) \approx F(\lambda_{wi})$,适用于开环模式较为接近的小邻域范围内^[17],式(24)、(25)所示的解析表达式仅在 $\lambda_{wi} \approx \lambda_{xi}$ 时适用,当前研究工作中对该小邻域范围暂无明确的定义。上述开环模式分析方法从数学推导的角度证明了强动态交互作用的发生降低系统稳定性的原因,具有一定的普适性,已被应用于交流电网、交直流混联电网^[20]以及微电网^[17]系统的强动态交互作用的分析中。

2.3 风电场-柔性直流系统稳定性分析步骤

闭环互联系统的稳定运行,不仅要考虑各个子 系统的开环稳定特性,还应考虑子系统间的动态交 互作用对稳定性的影响。基于2.1节中的简化等效 分析,发现大规模风电场的高阶特征方程可以采用 等效降阶的方法,使用单台参考风机的动态特性和 线路拓扑信息来估计风电场子系统的开环稳定性。 2.2节的分析表明,即使子系统是开环稳定的,子系 统间的动态交互也可能导致闭环互联系统失稳。

闭环互联系统判断稳定性的方法是:首先求取 开环子系统的振荡模式相关信息,再判断子系统间 交互作用对闭环系统稳定性的影响。当开环模式接 近时,强动态交互作用发生,交互作用对闭环稳定的 影响显著增大。"模式接近"的判定是基于文献[25] 所提方法进行的改进,即当一个子系统的开环振荡 模式频率处于另一子系统开环模式频率的±15%范 围内时,认为2个开环振荡模式接近。当交互作用 强度大于开环模式阻尼,即不满足式(26)时,闭环系 统失稳。该稳定性判断方法不依赖于参数模型的建 立。当由于商业保密等原因无法获得系统全阶参数 模型时,可通过端口测量数据获取子系统开环动态 信息^[17],判断闭环互联系统的稳定性,限于文章篇幅 不在此展开论述。

因此针对风电场经柔性直流并网的系统,稳定

性分析流程图如附录D图D1所示,具体步骤如下。

1)首先考虑子系统间开环的情况,针对高阶风 电场动态模型,选取第r台风机的动态特性作为参 考,建立如式(15)所示的风电场子系统特征状态矩 阵A_{wf},用风电场内某台风机动态特性和风电场拓扑 信息估计风电场子系统开环稳定特性。

2)建立柔性直流部分子系统的开环特征方程, 求取开环特征矩阵A₄并判断子系统开环稳定特性。

3)若子系统开环不稳定,则应采取相应的稳定 性增强措施:如针对风电场子系统可降低风机出力、 调整风机接入位置等;针对柔性直流子系统可调整 线路或控制器参数。若子系统均为开环稳定,则进 一步分析闭环系统的稳定性。

4)求取子系统的开环振荡模式,寻找子系统间 是否有一对接近的开环特征值。若存在一对开环模 式λ_{wi}≈λ_π,根据式(24)求取子系统间的交互作用强 度。判断是否满足式(26),若不满足式(26),则闭环 系统稳定;若满足式(26),则风电场子系统和柔性直 流子系统间的动态交互作用可能导致闭环系统失 稳,需采取相应的稳定性增强措施。

3 算例分析

风电场通过柔性直流接入交流系统的结构如 图1所示,本文算例中风电场内交流拓扑采用图5(a) 所示的串联结构,并引入图5(b)所示的并联结构进 行对比分析。下面首先分析风电场和柔性直流开环 子系统稳定性及其随系统参数变化的特性,然后分 析系统闭环互联后子系统间动态交互作用对稳定性 的影响。

图 5 风电场风机数增加的示意图

Fig.5 Schematic diagram of wind farm when adding number of wind turbines

3.1 风电场开环系统分析

算例系统具体参数如附录E表E1所示。初始 状态下风电场共有3台风机,可分别根据式(7)、 (11)求得单台风机的振荡模式和风电场全阶模型振 荡模式结果,根据式(15)可求得风电场等效模型的 振荡模式结果。以图5(a)中的风机1为例,其状态 矩阵A_{ac}的模式计算结果如表1所示。

可见附录A图A1所示的15阶PMSG模型含4

表1 单台风机的模式计算结果

Ta	ble	1	Modal	calcu	lation	results	of
----	-----	---	-------	-------	--------	---------	----

single wind turbine

参与性因子分析
风机网侧换流器控制内环d轴动态
风机网侧换流器控制内环q轴动态
风机网侧换流器定直流电压控制外环
风机PLL动态环节

个振荡模式。根据式(15),可得线路拓扑信息矩阵 L,如式(27)所示。

$$L_{\rm s} = \begin{bmatrix} 2.5 & 2 & 1.5 \\ 2 & 2 & 1.5 \\ 1.5 & 1.5 & 1.5 \end{bmatrix} I \tag{27}$$

 λ_{11} =0.163、 λ_{12} =0.424 和 λ_{13} =5.412 为 L_s 的特征 值,应用式(11)求得全阶模型振荡模式计算结果见 附录E表E2第1列;分别选取风机1—3作为参考风 机,应用式(17)求得风电场子系统等效模型振荡模 式计算结果见表E2第2—4列,对风电场主导振荡 模式估计误差分别为0.18%、0.33%和0.21%。可见 在风机运行工况差异有限时,采用2.1节提出的风电 场降阶等效方法可以较为准确地估计风电场子系统 的振荡模式。对比采用不同机组做参考机的情形, 当风机1做参考机时估计振荡模式的阻尼最差,这 是由于风机1距离风电场输出端口节点最远,受到 拓扑结构的影响较大。换言之,若选取风机1做参 考机进行风电场模式估计的结果是稳定的,则全阶 模型对应的振荡模式也是稳定的。

针对表E2中风电场主导振荡模式-3.73±j61.4, 分析风机接入台数N、风电场拓扑结构、风机输出功 率等因素对该模式的影响。采用串联结构的风电场 中风机台数增加时的拓扑结构如图5(a)所示,假定 风机接入节点间的线路长度相等,则参考风机与 PLL相关的振荡模式和基于式(17)估算的风电场主 导振荡模式随N变化情况如附录E表E3第3、4列 所示,对应振荡模式根轨迹如图6(a)所示。图中, 模型1对应降阶模型估算结果,模型2对应全阶模型 结果,模型3对应降阶模型参考风机模式结果,后 同。当N=4和N=7时,风电场主导振荡模式的参与 性因子PFs(Participation Factors)计算结果如图6(b) 所示。可见链路上串联的风机均参与了主导振荡模 式,距离PCC较远的风机的参与性因子较大。

为研究风电场拓扑结构对系统稳定性的影响, 增加并联系统算例作为对比。相同的风机并联接入 风电场的系统结构示意图如图5(b)所示,此时风机 的动态特性相同,可选择任一台风机作为参考机。 采用并联结构的风电场主导模式随N变化的根轨迹 如图7(a)所示。可见当N增大时,单台风机振荡模 式的变化主要来自于潮流对PCC电压的影响;风电 场子系统主导模式的阻尼和频率不断降低,当N=12

图 6 串联风电场主导振荡模式与参与性因子随N变化 Fig.6 Dominant oscillation mode and PFs vs. N of wind turbine in series connection

时进入复平面的右半平面,此时风电场子系统不稳 定。对应振荡模式计算结果见附录 E表 E3。风机 接入台数的增加对稳定性有着不利的影响。主导振 荡模式的参与性因子分析结果如图 7(b)所示。可 见随着并联风机数的增加,风电场主导振荡模式阻 尼降低,而该振荡模式由所有并联的风机共同参与 且参与程度相近,表征风机间交互作用对风电场动 态特性的不利影响由所有风机共同参与。

图7 并联风电场主导振荡模式与参与性因子随N变化

Fig.7 Dominant oscillation mode and PFs vs. N of wind turbine in parallel connection

对比2种结构下的模式计算结果可知,采用串 联结构的风电场更加不利于大规模风电的接入,说 明风电场中风机接入的位置对稳定性有着不可忽略 的影响,可调整风电场拓扑结构或合理选择新增风 机的接入位置以改善风电场子系统的开环稳定性。

针对风机输出功率对风电场主导振荡模式的影响,考虑如下3种情况:每台风机输出功率降低20%、增大20%和增大40%。风电场子系统在风机台数增加时主导模式的计算结果如附录E表E4所示。采用串联结构的风电场在上述3种情况下,稳定运行允许接入的最大风机台数分别为7、5、5;采用并联结构的风电场在上述3种情况下允许接入的最大风机台数分别为16、9、7。对比附录E表E3中的模式计算结果,可知当风机输出功率增大时,主导模式的阻尼降低;当风机输出功率降低时,风电场主

导模式的阻尼增大,对应风电场允许接入更多数量的风机。

上述分析基于风电场内风机动态特性差异有限 的假设,分析了多种因素对风电场动态特性的影响。 为不失一般性,需考虑风机动态差异较大时,风电场 等效降阶模型的有效性。在实际工程中,海上风电 场通常同时采用串联/并联结构,如图8所示。图 中,同一链路上风机地理位置较为接近,通过串行连 接接入PCC;不同链路之间地理位置可能较远,对应 链路末端至PCC的距离较长。

图8 采用混联结构的风电场

考虑如下4种不同的情况。

1)当3条链路上15台风机输出功率相同(0.9 p.u.)、 线路长度相同时,风机的动态差异较小,采用全阶模 型和分别采用链路1-3上的风机做参考机的模式 计算结果如附录E图E1(a)所示。可见当风机动态 差异较小时,采用式(15)所示的等效模型可以有效 地估计系统稳定特性。

2)当不同链路上风机输出功率差异较大,如链路1上风机有功出力均为0.9 p.u.,链路2上风机有功出力均为0.75 p.u.,链路3上风机有功出力均为0.3 p.u.时,分别采用3条链路上的风机做参考机,计算降阶模型结果,对应振荡模式的相对位置如附录E图E1(b)所示。可见此时采用链路1上风机1-1的等效模型结果能够包含全阶模型阻尼最差的振荡模式。而取链路2上风机2-1和链路3上风机3-1做参考机时,等效模型结果无法包含全阶模型计算结果中阻尼最差的振荡模式。此时,选取输出功率较大风机作为参考机可保证等效模型在风机工况差异较大时的有效性。

3)当链路距离 PCC 距离不同时,如链路1—3距 离 PCC 分别为1.5、1、0.5 km,采用全阶模型和等效 模型的模式计算结果如附录E图 E1(c)所示。可见 采用链路1上风机做参考机时,模式计算结果可以 包含全阶模型的计算结果;而采用链路2、3上风机 做参考机时,模式计算结果不能包含全阶模型计算

结果中阻尼最差的振荡模式。此时,应选距离PCC 较远的风机作为参考机。

4)同一条链路上的风机由于地理位置较近,输 出功率不会存在过大差异,而串联结构导致的端口 电压差异会使得同一链路上风机的动态特性之间存 在一定差别。以链路1为例,链路上风机输出功率 相同,链路节点间线路长度相等。分别采用链路1 上不同风机进行等效计算,其结果如附录E图E1 (d)。可见当采用距离PCC最远的风机1-1做参考 机时,等效模型的计算结果能包含全阶模型的主导 振荡模式,以保证稳定分析的有效性。

总结上述影响因素可以发现:①风电场接入机 组数N的增加会导致风电场主导振荡模式的阻尼和 振荡频率降低,在风机接入数超过最大允许接入数 时该模式进入复平面的右半平面,导致风电场子系 统失稳。②新增风机对风电场主导模式的影响与风 机接入位置和风电场拓扑结构相关,串联拓扑结构 下允许风机接入的最大数较小,并联拓扑结构下允 许较多风机的接入。因此针对新接入风电场的风 机,可通过调整风机接入位置改善风电场子系统的 稳定性。③风机输出功率增大对风电场主导振荡模 式的阻尼有着不利的影响,因此在风电场设计阶段 需考虑风机额定输出功率下的系统稳定性,同时可 以通过改变风电场拓扑结构来扩大风电场最大输出 容量。④当风机动态差异较大时,需选取开环稳定 特性较差的风机作为参考机,如输出功率较大、距离 PCC较远的风机,以保证等效分析模型的有效性。

3.2 闭环互联系统稳定性分析

当风电场采用图 5(a)所示的串联结构,每台风 机的输出功率为1.2 p.u. 且 N=3时,风电场子系统振 荡模式可由式(11)求得,对应开环模式计算结果如 附录 E表 E2第4列所示。柔性直流子系统的开环状 态方程可通过式(6)求得,子系统开环振荡模式为开 环矩阵 A_d的特征值,其模式计算和参与性因子分析 结果如表2所示。

表2 柔性直流子系统模式分析结果

Table 2 Modal calculation results of VSC-HVDC

振荡模式	参与性因子分析
$\lambda_{T1}^1 = -644.6 \pm j924.2$	整流器有功控制内环动态
$\lambda_{T1}^2 = -71.35 \pm j264.4$	整流器交流电压控制内环动态
$\lambda_{T1}^3 = -1.77 \pm j46.15$	整流器PLL动态环节
$\lambda_{T1}^4 = -5.04 \pm j816.5$	直流线路电容、电感动态

根据式(12)可建立闭环互联系统状态空间模型, 由矩阵A可求得闭环系统振荡模式。不同工况下, 闭环系统模式随N变化的根轨迹如图9所示。随着 风机串联接入数N的增大,当N=5时风电场子系统 的主导振荡模式 λ_w =-1.81±j49.52在复平面上接近 柔性直流子系统的开环模式 λ_{T} =-1.77±j43.15,此 时不满足式(26),闭环系统出现负阻尼的闭环振荡 模式,对应的根轨迹如图9(a)所示。

图9 闭环系统模式随N变化的根轨迹

Fig.9 Root locus of closed-loop system mode vs. N

由图9(a)可见,随着N增大,风电场子系统开环 主导振荡模式向复平面的右下方移动,当N=5时该 主导振荡模式接近柔性直流子系统的开环振荡模 式,此时风电场子系统和柔性直流子系统间发生强 动态交互作用,对应闭环振荡模式 $\hat{\lambda}_{T1}$ 进入复平面右 半平面,闭环系统失稳。

强动态交互作用在模式分析法中,在数值上体 现为"开环模式数值接近、闭环模式远离";在模态上 体现为"参与强交互的闭环模式对应的模态线性相 关",即在两模式中同一状态变量主导的模态呈0° 或180°夹角,位于同一直线上,称此时系统满足发生 强动态交互的模式条件。参与强动态交互的振荡模 式 $\hat{\lambda}_w$ 和 $\hat{\lambda}_{rn}^3$,其参与性因子计算结果分别如图10(a) 和图10(b)所示。可见当子系统开环振荡模式接近 时,强动态交互作用的发生使得2个子系统的状态 变量较大程度地参与了对方的主导振荡模式。此 时,两闭环模式的模态分析结果如图10(c)和图10 (d)所示,闭环模式的特征向量呈线性相关,满足强 动态交互作用发生的模式条件^[20]。

针对上述失稳情形,可采取如下几种稳定性增强措施,以扩大风电场-柔性直流系统的运行稳定域。从子系统间交互作用分析的角度出发,可增大直流系统滤波电容 C_r,以降低子系统间交互作用强度;可改变柔性直流子系统模式对应的控制参数,如 增大整流器 PLL的积分参数,以破坏强交互作用的

图 10 参与交互振荡模式的参与性因子和模态结果

Fig.10 PFs and modal analysis results when participating in interaction oscillation modes

开环模式条件。从风电场子系统稳定性增强的角度 出发,可改变第4、5台风机的接入位置,以改善风电 场子系统的开环主导振荡模式阻尼,破坏子系统间 强交互作用的模式条件。

针对第1种增大接口节点电容的方法,对应式 (6)中柔性直流子系统与外部的耦合矩阵*B*_d中相应 的元素减小,式(12)中子系统间耦合项*B*_d*C*_{wf}幅值降 低,表明闭环系统受强动态交互作用的影响减弱。 当电容值变为初始值的1.2倍时,风机接入数从*N*=3 增大到*N*=5的系统根轨迹如图9(b)所示。可见在 *N*=5时子系统开环模式接近,仍发生强动态交互作 用,振荡模式阻尼降低,但满足式(26),闭环系统仍 未失稳。

针对第2种增大整流器 PLL 积分控制参数 k_i^{PLL} 的方法,将 k_i^{PLL} 从 50 增大到 55,柔性直流子系统的开 环振荡模式向复平面上方移动,远离风电场子系统 的主导振荡模式。此时强动态交互作用发生的开环 模式条件被破坏,子系统间动态作用强度明显降低, 对应着开闭环振荡模式差减小,闭环系统维持稳定, 对应根轨迹如图 9(c)所示。在此参数条件下,闭环 振荡模式 $\hat{\lambda}_w$ 和 $\hat{\lambda}_{\pi}^3$ 间未发生强动态交互作用,对应 参与因子计算结果如图 10(a)和图 10(b)所示。对 比图 10 中 2 种情况下的参与性因子计算结果可知, 调整控制参数破坏了强动态交互作用发生的开环模 式条件,此时2个子系统状态变量参与对方振荡模 式的程度大幅降低,振荡模式的模态计算结果如附 录E图E2所示,可见闭环模式的状态变量呈线性不 相关,不发生强动态交互作用。

针对第3种从增强风电场子系统开环稳定性出发的方法,新增的第4、5台风机接入风电场PCC而非串联在原有机组后方,此种混联结构下线路拓扑信息矩阵发生改变,第4、5台风机并联接入后风电场振荡模式为-3.25±j59.19和-2.82±j57.29,对比模式计算结果可知,改变风机接入位置后风电场子系统主导振荡模式阻尼得到改善,此时子系统强动态交互的开环模式条件被破坏,闭环系统在N增大到5时保持稳定,对应根轨迹如图9(d)所示。

为验证上述分析及稳定性增强方法的正确性, 基于图 5(a)所示的含 5 台 PMSG 的风电场-柔性直 流系统搭建仿真模型。扰动设置为在 0.1 s时风机 1 (PMSG-1)的输出功率增大 0.2 p.u.,得到不同情况下 节点电压幅值(标幺值)和风机 2(PMSG-2)输出功率 (标幺值)的变化情况,分别如附录 F图 F1(a)、(b)所 示。可见当 N=5,风机串联时,闭环系统失稳,3种稳 定性增强方法均可不同程度地增加系统的稳定性, 验证了上述方法的有效性。

上述稳定性增强措施针对由强动态交互作用导 致的失稳现象具有一定的有效性,但在作用机理和 适用范围上有所不同。增大节点电容是通过降低动 态交互作用的强度以保证系统稳定性,但此时强动 态交互仍是会发生的。在工程实际中,需要额外的 并联电容器成本较高。调整控制参数和改变风机接 入位置均破坏了开环模式接近的条件,避免了强动 态交互作用的发生。通过合理设计风机连接结构避 免强动态交互作用的发生,适用于风电场规划建设 阶段。而针对已建成的风电场,调整控制参数是较 为简便的稳定性增强方法,无需额外的设备投资。

4 结语

本文从交互作用的角度研究了风电场内风机间 交互作用以及风电场和柔性直流系统间交互作用对 稳定性的影响,得到主要结论如下。

1)大规模风电场可用单台风机动态模型和线路 拓扑信息矩阵进行降阶,该等效降阶方法理论上 适用于用任意拓扑结构的风电场稳定性分析,对大 规模风电接入的电网提供了一种稳定性分析模型。

2)基于风电场等效模型,研究发现风电场拓扑结构、风机接入位置和数量以及风机输出功率等因素均会影响风电场系统的稳定,并且采用串联结构的风电场拓扑最不利于大规模风电场的输出稳定。

3)构建了风电场-柔性直流系统的闭环互联模

型,研究发现风电场和电网间的动态交互作用会影响闭环系统振荡模式的阻尼。当满足特殊的开环模式条件时,即使接入的风电场子系统和柔性直流子系统均开环稳定,此时的闭环系统仍有失稳的风险。

4)基于风电场等效降阶模型和闭环交互作用进 行分析,给出了增强风电场-柔性直流系统稳定性的 具体方法,如通过改变风机接入位置、调整风电场拓 扑结构、整定合适的控制参数等方法扩大风电场-柔 性直流系统的稳定运行范围。

本文采用开环模式分析方法分析了强动态交互 对闭环系统稳定性的影响,动态交互作用强度的解 析表达形式仅在开环模式接近的条件下成立,由于 当前研究工作中缺少对模式接近这一概念的明确定 义,未来工作中应进一步量化该方法适用范围和分 析结果误差。开环模式分析方法能够从数学上证明 强动态交互作用发生导致稳定特性变差的机理,但 缺少对应物理机理层面的解释,未来研究中应当思 考如何对该方法进行改进,以明确强交互作用的物 理意义。同时,在未来工作中可扩展研究背景,针对 多个风电场经多端直流输电接入交流大电网的系统 研究其稳定特性。

附录见本刊网络版(http://www.epae.cn)。

参考文献:

- [1] 王国栋,卢少锋,张晓佳,等.风电场VSC-HVDC并网不平衡运行改善控制策略[J].电力工程技术,2020,39(1):44-50.
 WANG Guodong,LU Shaofeng,ZHANG Xiaojia, et al. An improved control strategy for wind farm with VSC-HVDC under unbalanced voltage[J]. Electric Power Engineering Technology, 2020,39(1):44-50.
- [2] 樊陈,姚建国,张琦兵,等.英国"8·9"大停电事故振荡事件分析及思考[J].电力工程技术,2020,39(4):34-41.
 FAN Chen,YAO Jianguo,ZHANG Qibin, et al. Reflection and analysis for oscillation of the blackout event of 9 August 2019 in UK[J]. Electric Power Engineering Technology,2020, 39(4):34-41.
- [3]郑凯元,杜文娟,王海风.聚合恒功率负荷对直流微电网稳定 性影响的阻抗法分析[J].电网技术,2021,45(1):134-148.
 ZHENG Kaiyuan, DU Wenjuan, WANG Haifeng. DC microgrid stability affected by aggregated constant power loads based on impedance method[J]. Power System Technology,2021,45 (1):134-148.
- [4] 赵雨童,高飞,张博深. 基于交流电流下垂特性控制的VSC建 模和稳定性分析[J]. 电力自动化设备,2021,41(5):50-55.
 ZHAO Yutong, GAO Fei, ZHANG Boshen. Modeling and stability analysis of VSC with droop characteristic based on AC current[J]. Electric Power Automation Equipment,2021,41(5): 50-55.
- [5]姜惠兰,周照清,蔡继朝.风电接入比例对电力系统暂态功 角稳定性影响的分析方法[J].电力自动化设备,2020,40(7): 53-67.

JIANG Huilan, ZHOU Zhaoqing, CAI Jizhao. Analysis method of influence of wind power access proportion on transient power angle stability of power system[J]. Electric Power Automation Equipment, 2020, 40(7):53-67.

- [6] 徐衍会,滕先浩.风电场内机群间次同步振荡相互作用[J]. 电力自动化设备,2020,40(9):156-164.
 XU Yanhui,TENG Xianhao. Interaction of sub-synchronous oscillation between wind turbine clusters in wind farm[J]. Electric Power Automation Equipment,2020,40(9):156-164.
- [7] 董文凯,王洋,王海风.用于小信号稳定性分析的风电机群单机等值模型[J].电网技术,2021,45(4):1241-1250.
 DONG Wenkai,WANG Yang,WANG Haifeng. Single-machine equivalent model of a group of wind turbine generators for small-signal stability analysis[J]. Power System Technology, 2021,45(4):1241-1250.
- [8] 周佩朋,李光范,孙华东,等. 基于频域阻抗分析的直驱风电场等值建模方法[J]. 中国电机工程学报,2020,40(增刊1): 84-90.
 ZHOU Peipeng,LI Guangfan,SUN Huadong, et al. Equivalent modeling method of PMSG wind farm based on frequency do
 - modeling method of PMSG wind farm based on frequency domain impedance analysis[J]. Proceedings of the CSEE, 2020, 40(Supplement 1):84-90.
- [9] KIM D E, EL-SHARKAWI M A. Dynamic equivalent model of wind power plant using an aggregation technique[J]. IEEE Transactions on Energy Conversion, 2015, 30(4):1639-1649.
- [10] ZHOU Y,ZHAO L,LEE W J. Robustness analysis of dynamic equivalent model of DFIG wind farm for stability study[J]. IEEE Transactions on Industry Applications, 2018, 54(6):5682-5690.
- [11] 邵冰冰,赵书强,裴继坤,等. 直驱风电场经VSC-HVDC并网的次同步振荡特性分析[J]. 电网技术,2019,43(9):3344-3355.
 SHAO Bingbing, ZHAO Shuqiang, PEI Jikun, et al. Subsynchronous oscillation characteristic analysis of grid-connected DDWFs via VSC-HVDC system[J]. Power System Technology, 2019,43(9):3344-3355.
- [12] KUNJUMUHAMMED L P, PAL B C, GUPTA R, et al. Stability analysis of a PMSG-based large offshore wind farm connected to a VSC-HVDC[J]. IEEE Transactions on Energy Conversion, 2017, 32(3):1166-1176.
- [13] STRACHAN N P W, JOVCIC D. Stability of a variable-speed permanent magnet wind generator with weak AC grids[J]. IEEE Transactions on Power Delivery, 2010, 25(4):2779-2788.
- [14] 王晖,彭依,杨立敏,等.集群新能源经柔直孤岛送出换流站的 功率越限控制研究[J].电力工程技术,2021,40(3):51-59.
 WANG Hui,PENG Yi,YANG Limin, et al. Fast over-limit power control of converter station sending out new energy in island mode through VSC-HVDC[J]. Electric Power Engineering Technology,2021,40(3):51-59.
- [15] 郑凯元,杜文娟,王海风. 模式谐振理论及其在电力系统中的应用[J]. 南方电网技术,2020,14(2):34-45.
 ZHENG Kaiyuan, DU Wenjuan, WANG Haifeng. Modal resonance theory and its application in power system[J]. Southern Power System Technology,2020,14(2):34-45.
- [16] DOBSON I, ZHANG J, GREENE S, et al. Is strong modal resonance a precursor to power system oscillations?[J]. IEEE Transactions on Circuits and Systems I :Fundamental Theory and Applications, 2001, 48(3): 340-349.
- [17] 郑凯元,杜文娟,王海风.动态单元间交互作用对直流微电 网稳定性影响的分析[J].中国电机工程学报,2021,41(23): 7963-7980.
 ZHENG Kaiyuan, DU Wenjuan, WANG Haifeng. Analysis on the stability of DC microgrid affected by interactions among dynamic components[J]. Proceedings of the CSEE, 2021,41 (23):7963-7980.
- [18] KRISMANTO A U, MITHULANANTHAN N. Identification of modal interaction and small signal stability in autonomous

microgrid operation[J]. IET Generation, Transmission & Distribution, 2018, 12(1):247-257.

 [19] 谢小荣,刘华坤,贺静波,等. 直驱风机风电场与交流电网相互 作用引发次同步振荡的机理与特性分析[J]. 中国电机工程学 报,2016,36(9):2366-2372.
 XIE Xiaorong,LIU Huakun,HE Jingbo,et al. Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full-converter wind turbines and AC systems

152

- [J]. Proceedings of the CSEE,2016,36(9):2366-2372.
 [20] DU W J, FU Q, WANG H F. Small-signal stability of an AC / MTDC power system as affected by open-loop modal coupling between the VSCs[J]. IEEE Transactions on Power Systems,2018,33(3):3143-3152.
- [21] DU W J, WANG Y, WANG H F, et al. Concept of modal repulsion in examining the sub-synchronous oscillations in power system[J]. IEEE Transactions on Power Systems, 2018, 33(4):4614-4624.
- [22] DU Wenjuan, WANG Yijun, WANG Haifeng, et al. Small-disturbance stability limit of a grid-connected wind farm with PMSGs in the timescale of DC voltage dynamics[J]. IEEE Transactions on Power Systems, 2021, 36(3):2366-2379.
- [23] LYU J, CAI X, MOLINAS M. Frequency domain stability analysis of MMC-based HVDC for wind farm integration[J]. IEEE

Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(1): 141-151.

- [24] SU C B, LIU C R, JIANG S W, et al. Probabilistic power flow for multiple wind farms based on RVM and holomorphic embedding method[J]. International Journal of Electrical Power & Energy Systems, 2021, 130(2):106843.
- [25] 杜文娟,付强,王海风. 一种适用于VSC接入引发次同步振荡的在线定位方法:CN109713685B[P]. 2021-01-29.

作者简介:

任必兴(1988—),男,工程师,博士后, 通信作者,主要研究方向为大规模新能源、 柔性输电接入电力系统的稳定分析与控 制、电力系统宽频振荡机理分析与抑制等 (E-mail:renbixing@126.com);

孙 蓉(1979—),女,研究员级高级工程师,硕士,主要研究方向为电力系统的稳定分析与控制;

李 强(1981—),男,研究员级高级工程师,博士,主要研究方向为新能源并网技术。

(编辑 李玮)

Equivalent modeling and small-signal stability analysis on PMSG-based large-scale wind farm connected to power system via VSC-HVDC

REN Bixing^{1,2}, SUN Rong¹, LI Qiang¹, GAN Deqiang³, ZHOU Qian¹, WANG Chenggen¹

(1. State Grid Jiangsu Electric Power Company Limited Research Institute, Nanjing 211103, China;

2. State Grid Jiangsu Electric Power Company Limited, Nanjing 210024, China;

3. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract: The order of the detailed model for large-scale wind farm with wind turbines integrated to AC system via VSC-HVDC (Voltage Source Converter-based High Voltage Direct Current) is too high, which brings challenges to the small-signal stability analysis and instability mechanism research. For that, the open-loop and closed-loop linear state space models of wind farm integrated to AC system via VSC-HVDC are built. Based on the open-loop state space model of wind farm and the relationship between the nodal voltage and current of wind farm, the full-order wind farm model is equivalent through the single wind turbine, interconnected location of wind turbine, topological structure of wind farm and number increase of wind turbines on oscillation mode damping of wind farm are analyzed. The closed-loop interconnected model of wind farm and VSC-HVDC system is derived based on the reduced-order model of wind farm, and the influences of possible strong dynamic interaction between two subsystems on the small-signal stability are analyzed when the number of wind turbines increases. The research shows that when the number of wind turbines increases, the damping of dominated oscillation mode decreases. When it is closed to an open-loop oscillation mode of VSC-HVDC converter, the strong dynamic interaction induced by modal resonance may cause the system instability.

Key words: VSC-HVDC power transmission; large-scale wind farms; equivalent model; dynamic interaction; small-signal stability analysis

附录 B: PMSG 建模

单个 PMSG 的结构及其控制模型如图 B1 所示,其动态模型包含永磁同步发电机模型、轴系模型、机侧换 流器与网侧换流器模型、直流电容电压和风机 PLL 模型。永磁同步机在 dq 同步旋转坐标系下的动态数学模型 如式(B1)所示。

$$L_{\rm p} \frac{{\rm d}i_{\rm psd}}{{\rm d}t} = u_{\rm psd} - R_{\rm p}i_{\rm psd} + \omega_{\rm p}L_{\rm p}i_{\rm psq}, L_{\rm p} \frac{{\rm d}i_{\rm psq}}{{\rm d}t} = u_{\rm psq} - R_{\rm p}i_{\rm psq} - \omega_{\rm p}L_{\rm p}i_{\rm psd} - \omega_{\rm p}\psi_{\rm f}$$
(B1)

式中: L_p 为定子 dq轴的绕组电感; R_p 为定子绕组电阻; $u_{psd} + ju_{psq}$ 为定子电压; ω_p 为永磁同步发电机转子转速。两相旋转坐标下 $i_{psd}^{ref} = 0$,电磁转矩方程可简化为式(B2)。

$$T_{\rm e} = \frac{3}{2} n_{\rm p} \psi_{\rm f} i_{\rm psq} \tag{B2}$$

式中: n_p 为永磁电机极对数; i_{psq} 为定子电流q轴分量; ψ_f 为永磁磁通。

图 B1 单 PMSG 结构 Fig.B1 Configuration of single PMSG

采用单质量块的轴系模型为:

$$J\frac{\mathrm{d}\omega_{\mathrm{p}}}{\mathrm{d}t} = T_{\mathrm{M}} - T_{\mathrm{e}} - R_{\mathrm{w}}\omega_{\mathrm{p}}$$
(B3)

式中: *J* 为包含风机和转子在内的总转动惯量; *T*_M 为风机机械转矩; *R*_w 为旋转阻力系数。根据风机基本原理,风机输出的机械功率 *P*₂和机械转矩关系如下:

$$P_{\rm e} = \frac{1}{2} \rho S C_{\rm P} w^3 = T_{\rm M} \omega_{\rm p} \tag{B4}$$

式中: ρ 为空气密度; S为风力机扫风面积; C_p为风能利用系数; w为垂直于风力机叶片的风速。风机的机侧换流器系统通常采用最大功率跟踪控制:通过控制 d 轴电流以控制无功、降低发电机损耗; q 轴通过定转 速控制、将机械功率转化为电磁功率。对应矢量控制如图 B2 所示,则对应模型如式(B5)、(B6)所示。

$$\frac{dx_{p1}}{dt} = i_{psd}^{ref} - i_{psd}, \ \frac{dx_{p2}}{dt} = \omega_p^{ref} - \omega_p, \ \frac{dx_{p3}}{dt} = i_{psq}^{ref} - i_{psq}$$
(B5)

$$\begin{cases} u_{psd} = K_{p1}(i_{psd}^{ref} - i_{psd}) + K_{i1}x_{p1} + \omega_p L_p i_{psq} \\ u_{psq} = K_{p3}(i_{psq}^{ref} - i_{psq}) + K_{i3}x_{p3} - \omega_p L_p i_{psd} + \omega_p \psi_f \\ i_{psq}^{ref} = K_{p2}(\omega_p^{ref} - \omega_p) + K_{i2}x_{p2} \end{cases}$$
(B6)

图 B2 PMSG 机侧换流器控制 Fig.B2 Configuration of RSC of PMSG

风机网侧换流器控制目标是实现直流电容电压稳定、控制输出功率,并通过换流器端口输出电压定向实现有功和无功电流的解耦控制,其控制结构如图 B3 所示。

图 B3 PMSG 网侧换流器控制 Fig.B3 Configuration of GSC of PMSG GSC 通常 d 轴采用定直流电压控制, q 轴采用定无功电流为 0 的控制,则数学模型如式(B7)、(B8)所示。

$$\frac{dx_{p4}}{dt} = u_{DC}^{ref} - u_{DC}, \quad \frac{dx_{p5}}{dt} = Q^{ref} - Q, \quad \frac{dx_{p6}}{dt} = i_{gd}^{ref} - i_{gd}, \quad \frac{dx_{p7}}{dt} = i_{gq}^{ref} - i_{gq}$$
(B7)

$$\begin{cases} i_{gd}^{\text{ref}} = K_{p4}(u_{DC}^{\text{ref}} - u_{DC}) + K_{i4}x_{p4}; \ i_{gq}^{\text{ref}} = K_{p5}(Q^{\text{ref}} - Q) + K_{i5}x_{p5} \\ u_{cd} = K_{p6}(i_{gd}^{\text{ref}} - i_{gd}) + K_{i6}x_{p6} - \omega L_{g}i_{gq} + u_{gd}; \ u_{cq} = K_{p7}(i_{gq}^{\text{ref}} - i_{gq}) + K_{i7}x_{p7} + \omega L_{g}i_{gd} + u_{gq} \end{cases}$$
(B8)

风机两换流器间的直流电容电压动态为:

$$C_{\rm DC} u_{\rm DC} \frac{\mathrm{d}u_{\rm DC}}{\mathrm{d}t} = \frac{3}{2} (u_{\rm psd} i_{\rm psd} + u_{\rm psq} i_{\rm psq} - u_{\rm cd} i_{\rm gd} - u_{\rm cq} i_{\rm gq})$$
(B9)

风机网侧换流器 GSC 出口采用滤波电感以过滤环流产生的高频谐波,滤波电感上的电流动态方程如式 (B10)所示。

$$L_{g} \frac{di_{gd}}{dt} = u_{cd} - u_{gd} + \omega L_{g} i_{gq}, L_{g} \frac{di_{gq}}{dt} = u_{cq} - u_{gq} - \omega L_{g} i_{gd}$$
(B10)

式中: u_{gd} + ju_{gg} 为 PMSG 接入网络节点的电压; L_g 为端口滤波电感。风机采用同附录 A 图 A1(c)相同的 PLL 控制结构以锁定电网侧相角,其动态方程为:

$$\frac{\mathrm{d}x_{\mathrm{p}}^{\mathrm{PLL}}}{\mathrm{d}t} = u_{\mathrm{gd0}}k_{i}^{\mathrm{PLL}}(\theta_{\mathrm{p}} - \theta_{\mathrm{p}}^{\mathrm{PLL}}), \ \frac{\mathrm{d}\theta_{\mathrm{p}}^{\mathrm{PLL}}}{\mathrm{d}t} = x_{\mathrm{PLL}} + u_{\mathrm{gd0}}k_{\mathrm{p}}^{\mathrm{PLL}}(\theta_{\mathrm{p}} - \theta_{\mathrm{p}}^{\mathrm{PLL}})$$
(B11)

根据式(B1)-(B11)可建立单个 PMSG 的状态空间模型,如式(7)所示。

附录 C: 考虑线路动态时的风电场简化

2.1 节中的风电场等效建模未考虑风电场交流拓扑线路的动态,为不失一般性,考虑线路动态时的风电场等效建模推导如下。针对接入节点 k 的第 k 台风机,忽略交流线路电阻时,有端口线路动态方程如式(C1)所示。

$$l_k X_{\rm L} \frac{\mathrm{d}}{\mathrm{d}t} \Delta I_{\rm wkx} = \omega_0 (\Delta U_{\rm wkx} - \Delta U_{\rm w(k+1)x}) + \omega_0 l_k X_{\rm L} \Delta I_{\rm wky}, \quad l_k X_{\rm L} \frac{\mathrm{d}}{\mathrm{d}t} \Delta I_{\rm wky} = \omega_0 (\Delta U_{\rm wky} - \Delta U_{\rm w(k+1)y}) - \omega_0 l_k X_{\rm L} \Delta I_{\rm wkx}$$
(C1)

基于式(C1),可将端口电压电流写成矩阵形式如式(C2)所示。

$$\Delta \boldsymbol{U}_{wk} = l_k \boldsymbol{X}_{L} \begin{bmatrix} s/\omega_0 & -1\\ 1 & s/\omega_0 \end{bmatrix} \Delta \boldsymbol{I}_{wk} + \Delta \boldsymbol{U}_{w(k+1)}, \boldsymbol{E} = \begin{bmatrix} s/\omega_0 & -1\\ 1 & s/\omega_0 \end{bmatrix}$$
(C2)

将上述端口电压-电流关系式推广至风电场N台风机端口节点,可得到风电场电压电流关系式如下:

$$\Delta \boldsymbol{U}_{w} = \boldsymbol{X}_{E} \Delta \boldsymbol{I}_{w}$$

$$\begin{bmatrix} \Delta \boldsymbol{U}_{w1} \\ \Delta \boldsymbol{U}_{w2} \\ \vdots \\ \Delta \boldsymbol{U}_{wN} \end{bmatrix} = \begin{bmatrix} l_{11} \boldsymbol{X}_{L} \boldsymbol{E} & l_{12} \boldsymbol{X}_{L} \boldsymbol{E} & \cdots & l_{1N} \boldsymbol{X}_{L} \boldsymbol{E} \\ l_{21} \boldsymbol{X}_{L} \boldsymbol{E} & l_{22} \boldsymbol{X}_{L} \boldsymbol{E} & \cdots & l_{2N} \boldsymbol{X}_{L} \boldsymbol{E} \\ \vdots & \vdots & \ddots & \vdots \\ l_{N1} \boldsymbol{X}_{L} \boldsymbol{E} & l_{N2} \boldsymbol{X}_{L} \boldsymbol{E} & \cdots & l_{NN} \boldsymbol{X}_{L} \boldsymbol{E} \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{I}_{w1} \\ \Delta \boldsymbol{I}_{w2} \\ \vdots \\ \Delta \boldsymbol{I}_{wN} \end{bmatrix}$$
(C3)

取交流线路电抗矩阵如式(C4)所示。

$$\boldsymbol{X} = \begin{bmatrix} l_{11}X_{L} & l_{12}X_{L} & \cdots & l_{1N}X_{L} \\ l_{21}X_{L} & l_{22}X_{L} & \cdots & l_{2N}X_{L} \\ \vdots & \vdots & & \vdots \\ l_{N1}X_{L} & l_{N2}X_{L} & \cdots & l_{NN}X_{L} \end{bmatrix}$$
(C4)

结合式(7)中单个风机开环状态特征方程,式(8)中风电场子系统开环状态特征方程如式(C5)所示。

$$s\Delta \mathbf{X}_{wf} = \mathbf{A}_{wf} \Delta \mathbf{X}_{wf}; \ \mathbf{A}_{wf} = \text{diag}\left[\mathbf{A}_{wr}\right] + \text{diag}\left[\mathbf{B}_{wr}\right] \mathbf{X}_{E} \text{diag}\left[\mathbf{C}_{wr}\right]$$
(C5)

式(C5)中的状态空间模型可写成:

$$diag[\mathbf{B}_{wr}] \mathbf{X}_{E} diag[\mathbf{C}_{wr}] = diag[\mathbf{B}_{wr}] \begin{bmatrix} l_{11}X_{L}\mathbf{E} & l_{12}X_{L}\mathbf{E} & \cdots & l_{1N}X_{L}\mathbf{E} \\ l_{21}X_{L}\mathbf{E} & l_{22}X_{L}\mathbf{E} & \cdots & l_{2N}X_{L}\mathbf{E} \\ \vdots & \vdots & \vdots \\ l_{N1}X_{L}\mathbf{E} & l_{N2}X_{L}\mathbf{E} & \cdots & l_{NN}X_{L}\mathbf{E} \end{bmatrix} diag[\mathbf{C}_{wr}] = \\ \begin{bmatrix} l_{11}X_{L}\mathbf{B}_{wr}'(\frac{s}{\omega_{0}}\mathbf{E}_{1} + \mathbf{E}_{2})\mathbf{C}_{wr}' & l_{12}X_{L}\mathbf{B}_{wr}'(\frac{s}{\omega_{0}}\mathbf{E}_{1} + \mathbf{E}_{2})\mathbf{C}_{wr}' & \cdots & l_{1N}X_{L}\mathbf{B}_{wr}'(\frac{s}{\omega_{0}}\mathbf{E}_{1} + \mathbf{E}_{2})\mathbf{C}_{wr}' \\ \vdots & \vdots & \vdots \\ l_{21}X_{L}\mathbf{B}_{wr}'(\frac{s}{\omega_{0}}\mathbf{E}_{1} + \mathbf{E}_{2})\mathbf{C}_{wr}' & l_{22}X_{L}\mathbf{B}_{wr}'(\frac{s}{\omega_{0}}\mathbf{E}_{1} + \mathbf{E}_{2})\mathbf{C}_{wr}' & \cdots & l_{2N}X_{L}\mathbf{B}_{wr}'(\frac{s}{\omega_{0}}\mathbf{E}_{1} + \mathbf{E}_{2})\mathbf{C}_{wr}' \\ \vdots & \vdots & \vdots \\ l_{N1}X_{L}\mathbf{B}_{wr}'(\frac{s}{\omega_{0}}\mathbf{E}_{1} + \mathbf{E}_{2})\mathbf{C}_{wr}' & l_{N2}X_{L}\mathbf{B}_{wr}'(\frac{s}{\omega_{0}}\mathbf{E}_{1} + \mathbf{E}_{2})\mathbf{C}_{wr}' & \cdots & l_{NN}X_{L}\mathbf{B}_{wr}'(\frac{s}{\omega_{0}}\mathbf{E}_{1} + \mathbf{E}_{2})\mathbf{C}_{wr}' \\ \vdots & \vdots \\ l_{N1}X_{L}\mathbf{B}_{wr}'(\frac{s}{\omega_{0}}\mathbf{E}_{1} + \mathbf{E}_{2})\mathbf{C}_{wr}' & l_{N2}X_{L}\mathbf{B}_{wr}'(\frac{s}{\omega_{0}}\mathbf{E}_{1} + \mathbf{E}_{2})\mathbf{C}_{wr}' & \cdots & l_{NN}X_{L}\mathbf{B}_{wr}'(\frac{s}{\omega_{0}}\mathbf{E}_{1} + \mathbf{E}_{2})\mathbf{C}_{wr}' \\ \mathbf{E}_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \mathbf{E}_{2} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

取 $\lambda'_{L_k}(k=1,2,...,N)$ 为风电场交流网络矩阵的特征值,则存在相似变换矩阵使得式(C7)成立。

$$\boldsymbol{P}_{\chi} \boldsymbol{X} \ \boldsymbol{P}_{\chi}^{-1} = \boldsymbol{P}_{\chi} \begin{bmatrix} l_{11} X_{L} & l_{12} X_{L} & \cdots & l_{1N} X_{L} \\ l_{21} X_{L} & l_{22} X_{L} & \cdots & l_{2N} X_{L} \\ \vdots & \vdots & & \vdots \\ l_{N1} X_{L} & l_{N2} X_{L} & \cdots & l_{NN} X_{L} \end{bmatrix} \boldsymbol{P}_{\chi}^{-1} = \operatorname{diag}[\lambda_{Lk}^{\dagger}] \ k = 1, 2, \cdots, N$$
(C7)

采用中间状态变量 $\Delta Z = P^{-1} \Delta X'_{wf}$,则将式(C5)所示状态空间模型转换为:

$$s\Delta \mathbf{Z} = \mathbf{P}^{-1} \operatorname{diag} \left[\mathbf{A}_{wr}^{'} \right] \mathbf{P} \Delta \mathbf{Z} + \mathbf{P}^{-1} \operatorname{diag} \left[\mathbf{B}_{wr}^{'} \right] \mathbf{X}_{E} \operatorname{diag} \left[\mathbf{C}_{wr}^{'} \right] \mathbf{P} \Delta \mathbf{Z}$$
(C9)

式(C9)等号右侧第二部分可表示为:

$$P^{-1}\operatorname{diag}\begin{bmatrix}\boldsymbol{B}_{wr}^{\top}\end{bmatrix}\boldsymbol{X}_{E}\operatorname{diag}\begin{bmatrix}\boldsymbol{C}_{wr}^{\top}\end{bmatrix}\boldsymbol{P}\Delta\boldsymbol{Z} =$$

$$\frac{s}{\omega_{0}}\boldsymbol{P}^{-1}\begin{bmatrix}l_{11}X_{L}\boldsymbol{E}_{1} & l_{12}X_{L}\boldsymbol{E}_{1} & \cdots & l_{1N}X_{L}\boldsymbol{E}_{1}\\ l_{21}X_{L}\boldsymbol{E}_{1} & l_{22}X_{L}\boldsymbol{E}_{1} & \cdots & l_{2N}X_{L}\boldsymbol{E}_{1}\\ \vdots & \vdots & & \vdots\\ l_{N1}X_{L}\boldsymbol{E}_{1} & l_{N2}X_{L}\boldsymbol{E}_{1} & \cdots & l_{NN}X_{L}\boldsymbol{E}_{1}\end{bmatrix}\operatorname{diag}\begin{bmatrix}\boldsymbol{G}_{wr}^{\top}\end{bmatrix}\boldsymbol{P} +$$

$$P^{-1}\begin{bmatrix}l_{11}X_{L}\boldsymbol{E}_{2} & l_{12}X_{L}\boldsymbol{E}_{2} & \cdots & l_{1N}X_{L}\boldsymbol{E}_{2}\\ l_{21}X_{L}\boldsymbol{E}_{2} & l_{22}X_{L}\boldsymbol{E}_{2} & \cdots & l_{2N}X_{L}\boldsymbol{E}_{2}\\ \vdots & \vdots & & \vdots\\ l_{N1}X_{L}\boldsymbol{E}_{2} & l_{22}X_{L}\boldsymbol{E}_{2} & \cdots & l_{2N}X_{L}\boldsymbol{E}_{2}\\ \vdots & & & \vdots\\ l_{N1}X_{L}\boldsymbol{E}_{2} & l_{N2}X_{L}\boldsymbol{E}_{2} & \cdots & l_{NN}X_{L}\boldsymbol{E}_{2}\end{bmatrix}\operatorname{diag}\begin{bmatrix}\boldsymbol{G}_{wr}^{\top}\end{bmatrix}\boldsymbol{P} =$$

$$\frac{s}{\omega_{0}}\operatorname{diag}[\lambda_{Lk}^{\top}\boldsymbol{B}_{wr}^{\top}\boldsymbol{C}_{wr}^{\top}] + \operatorname{diag}[\lambda_{Lk}^{\top}\boldsymbol{B}_{wr}^{\top}\boldsymbol{E}_{2}\boldsymbol{C}_{wr}^{\top}]$$

将式(C10)和式(C11)代入式(C9),可得:

$$s\Delta \mathbf{Z} = \operatorname{diag}\left[\mathbf{E}_{1} - \frac{1}{\omega_{0}}\lambda_{Lk}^{\dagger}\mathbf{B}_{wr}^{\dagger}\mathbf{C}_{wr}^{\dagger}\right]^{-1} (\operatorname{diag}\left[\mathbf{A}_{wr}^{\dagger}\right] + \operatorname{diag}\left[\lambda_{Lk}^{\dagger}\mathbf{B}_{wr}^{\dagger}\mathbf{E}_{2}\mathbf{C}_{wr}^{\dagger}\right])$$
(C12)

式(C1)—(C12)的推导是考虑线路动态时,风电场等效模型的建立过程。当不考虑风电场交流拓扑线路动态时,区别在于式(C2)可简化为如下形式:

$$\Delta \boldsymbol{U}_{wk} = \boldsymbol{l}_{k} \boldsymbol{X}_{L} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \Delta \boldsymbol{I}_{wk} + \Delta \boldsymbol{U}_{w(k+1)}$$
(C13)

风电场子系统状态空间模型经过相似变换,可以得到如式(C14)所示的形式。当考虑线路电阻时,式(C14)可转换为式(15)。

$$s\Delta \mathbf{X}_{wf}^{'} = \mathbf{A}_{wf}^{'}\Delta \mathbf{X}_{wf}$$

$$\mathbf{A}_{wf}^{'} = \operatorname{diag}\left[\mathbf{A}_{wr}^{'}\right] + \operatorname{diag}\left[\lambda_{Lk}^{'}\mathbf{B}_{wr}^{'}\mathbf{E}_{2}\mathbf{C}_{wr}^{'}\right] \quad \lambda_{Lk}^{'} = 1, 2...N$$
(C14)

在额定运行频率(50 Hz)范围内,通常有 $\lambda_{Lk} B'_{wr} C'_{wr} \ll \omega_0 = 314.16$,式(B12)中分母项可近似处理为单位矩阵如式(C15)所示。

diag
$$\left[\boldsymbol{E}_{1} - \frac{1}{\omega_{0}} \lambda_{Lk}^{'} \boldsymbol{B}_{wr}^{'} \boldsymbol{C}_{wr}^{'} \right]^{-1} \approx \text{diag}[\boldsymbol{E}_{1}]^{-1} = \boldsymbol{I}$$
 (C15)

此时式(C12)和式(C14)有相似的形式,即风电场子系统等效模型的状态特征矩阵可采用参考风机的状态特征矩阵以及交流拓扑信息矩阵进行估计。

附录 D: 系统稳定检验流程

附录 E: 算例系统参数与部分模式/模态计算结果

对令	坊制工士	Table	e El Deta	ailed pa	rameters of stu 新始	dy case	
八家	比则坏 古 法 侧	 	KE		<u>郑</u> 祖	参 叙 百	
	且流멧	且孤线路电	PEL .	7.	.5m22	且弧线蹐电谷	4mF
		且流线路电	感	47	/.5μΗ	迎 受侧且流电压	150kV
柔性直流	交流侧	滤波电容		0	.5mF	滤波电抗	0.9mH
子系统		d 轴外环比例/	积分	1.2	/1000	d 轴内环比例/积分	0.2/60
		q 轴外环比例/	q 轴外环比例/积分		/1000	q轴内环比例/积分	0.1/50
		PLL 比例参	数		3.7	PLL 积分参数	50
		额定功率		10)MW	额定风速	8(m/s)
	风机	直轴电抗		(0.25	交轴电抗	0.15
		固定磁通		1	1n u	转子惯性	30 11
		额定转速		41	rad/s	d 轴比例/积分参数	1/20
PMSG	RSC GSC	a 轴外环比例/和公		4 frau / s		a轴内环比例/积分	05/55
			q 抽外环比例/积分		/2000	4 抽门 开比例 (初八)	0.37 3.3
		a 抽外环比例	d 轴外坏比例/积分		/ 3000	a 抽內坏比例/积力	0.1/60
		q 轴外环比例/积分		0.	.5/10	q 轴内环比例/积分	0.1/40
	PLL	PLL 比例参	数	7.2		PLL 枳分参数	70
风电场		线路单位电	阻	0.01	$l\Omega/km$	线路单位电感	63µH / km
子系统		风机至节点约	线路	0	.5km	PCC 至出口节点	1km
		表	E2 不同]参考机	.模式分析结果	对比	
	Table E2	Comparison of 1	nodal co	mputati	ion results of fu	ill and reduced-or	rder model
		全阶模型	风机1	做参考	风机 2 做参考	风机 3 做参考	_
		$-32.2 \pm j/66$	-33.2	± 1/53	$-33.1 \pm \frac{1}{56}$	$-33.2 \pm 3/53$	
		$-33.9 \pm j/44$	-33.4	± j/50	$-33.3 \pm 1/53$	$-33.4 \pm j/50$	
		$-33.9 \pm j/47$	-33.4	± j/50	$-33.4 \pm j/53$	$-33.4 \pm j/50$	
		$-36.7 \pm j577$	-37.0	± j575	$-37.1 \pm j576$	$-37.0 \pm j575$	
		$-36.9 \pm j578$	-36.8	± j577	$-36.8 \pm j577$	$-36.8 \pm j577$	
		$-36.9 \pm j577$	-36.7	± j576	$-36.8 \pm j577$	$-36.7 \pm j577$	
		$-9.27 \pm j112$	-9.19	± j112	$-9.28 \pm j112$	$-9.31\pm j113$	
		$-8.13 \pm j105$	-8.74	± j109	$-8.87 \pm j110$	$-8.74 \pm j109$	
		$-8.07 \pm j104$	-8.72	± j108	$-8.85 \pm j109$	$-8.72 \pm j107$	
		$-3.73 \pm j61.4$	-3.69	± j61.3	$-3.79 \pm j61.6$	$-3.81 \pm j61.5$	
		$-4.08 \pm j63.8$	-4.12	± j64.1	$-4.13 \pm j64.2$	$-4.12 \pm j64.3$	
		$-4.15 \pm j64.3$	-4.13	± j64.3	$-4.14 \pm j64.3$	$-4.14 \pm j64.3$	_
	_	最大误差	0.1	8%	0.33%	0.21%	
		表 E3 风电场振荡模式随 N 变化					
		Table E3 Os	scillation	n mode v	varies with num	nber of PMSG	
			<u> N-2</u>	参考M	いれ PLL 模式	<u> </u>	
			N -2	-4.0	52 ± 303.30	-3.03 ± 102.23	
		串	N = 3 N = 4	-4.	15± J04.24	-3.07 ± J01.27	
		E ¥	N -4	-4.	17± j04.//	$-3.23 \pm J30.84$	
		岆	N = S	-4.2	21 ± J04.97	$-2.37 \pm J34.33$	
			N = 0	-4.1	$10 \pm 104./3$	$-1.51 \pm j4/.32$	
			N = 1	-4.(04 ± 303.00	0.85 ± 155.72	
			N = 2	-4.0	02 ± 103.33	-3.89 ± 162.72	
			IV = 3	-4.]	12 ± 164.09	-5.85 ± 162.52	
		*	/v =4	-4.1	18 ± 164.59	-3.67 ± 162.23	
		ガ	N =5	-4.2	22± 164.93	-3.41 ± 160.98	
			N =6	-4.2	$25 \pm j65.15$	$-3.06 \pm j59.18$	
		3 /107	N =7	-4.2	27 ± j65.29	$-2.63 \pm j56.79$	
		联	N=8	-4.2	$29 \pm j65.40$	$-2.09\pm j53.83$	
			N=9	-4.3	$30 \pm j65.46$	$-1.41 \pm j50.24$	
			N = 10	-4.3	$30 \pm j65.48$	$-0.82\pm j46.11$	
			N = 11	-4.3	$30 \pm j65.46$	$-0.15 \pm j41.36$	
			N=12	-4.2	$29 \pm j65.41$	0.87 ± j35.17	

表 E1 算例系统具体参数

法体士子	风机		主导振荡模式	
进按 万式	个数	功率-20%	功率+20%	功率+40%
	N=2	$-3.85\pm j62.25$	$-3.79\pm j62.13$	$-3.73 \pm j61.87$
	N =3	$-3.74\pm \mathrm{j}61.84$	$-3.47\pm \mathrm{j}60.37$	$-3.26\pm j59.13$
	N=4	$-3.51 \pm j60.51$	$-2.85\pm j56.48$	$-2.36\pm j53.36$
甲	N=5	$-3.12\pm j58.04$	$-1.81 \pm j49.52$	$-0.62\pm j42.35$
	N=6	$-2.54\pm j54.10$	$0.45 \pm j36.21$	$3.42\pm j26.02$
联	N = 7	$-1.65\pm j47.90$		
	N = 8	$0.02 \pm j37.19$		
	N=2	$-3.89\pm \mathrm{j}62.57$	$-3.87\pm \mathrm{j}62.77$	$-3.84\pm j62.71$
	N =3	$-3.88\pm \mathrm{j}62.91$	$-3.74\pm \mathrm{j}62.46$	$-3.61 \pm j61.84$
	N=4	$-3.81\pm \mathrm{j}62.83$	$-3.46 \pm j61.19$	$-3.20\pm j59.74$
	N=5	$-3.67\pm j62.33$	$-3.11 \pm j59.05$	$-2.61 \pm j56.51$
并	N=6	$-3.47\pm \mathrm{j}61.40$	$-2.52\pm j56.10$	$-1.81 \pm j52.13$
	N = 7	$-3.22\pm j60.08$	$-1.82\pm j52.30$	$-0.65\pm j46.39$
	N = 8	$-2.91 \pm j58.42$	$-0.87\pm j47.52$	$1.23 \pm j38.87$
联	N =9	$-2.54\pm j56.39$	$0.53 \pm j41.51$	
	000	000		
	N = 16	$0.13\pm j31.29$		

表 E4 风电场功率对振荡模式的影响

Table E4 Impacts of output power on oscillation modes

Fig.E1 Calculation results of oscillation modes of wind farm and equivalent model

Fig.E2 Compass plot of closed-loop modes without strong dynamic interaction

附录 F: 算例时域仿真结果

Fig.F1 Time-domain simulative results of study case