计及源--荷预测不确定性的微电网双级随机优化调度

吕海鹏,希望·阿不都瓦依提,孟令鹏 (新疆大学 电气工程学院,新疆 乌鲁木齐 830002)

摘要:风光储微电网接入高渗透率的可再生能源对其经济运行构成了巨大的挑战。针对这一问题,提出了计 及源-荷预测不确定性的微电网双级调度策略。在日前调度阶段,以多场景下的期望运行成本最低为优化目 标,构建了基于多场景技术的随机优化调度模型。利用场景分析法对日前风电、光伏和负荷预测进行场景分 析;建立了多场景下含不确定变量的功率平衡方程,并将其松弛为不等式后作为一个随机事件使其以较高的 概率满足机会约束;此外,用机会约束规划构建了旋转备用容量的可靠性约束模型,使微电网在一定的置信 水平下满足系统的可靠运行。在日内调度阶段,提出了结合自适应小波包算法的日内滚动调度模型。利用 自适应小波包算法动态提取每一控制周期内超短期预测数据与日前调度计划之间的功率偏差,并由蓄电池、 超级电容器和主网供电共同平抑。

关键词:随机优化;机会约束;多场景技术;自适应小波包算法;混合储能

文献标志码:A

DOI:10.16081/j.epae.202203030

0 引言

中图分类号:TM 727;TM 73

《新时代的能源发展》白皮书指出,开发利用非 化石能源是推动中国能源绿色低碳转型的主要途 径,我国将大力推进风电、光伏等可再生能源替代化 石能源。与此同时,微电网的出现为可再生能源的 综合利用提供了一种有效的技术手段。随着风电、 光伏接入的比例越来越大,其随机性以及负荷预测 的不准确性给微电网的运行带来了诸多不确定性因 素,使得微电网的稳定运行面临巨大挑战^[1]。

如何对含有风电、光伏的微电网系统进行优化 调度,降低源-荷不确定性对微电网运行的影响,从 而提高微电网运行的经济性和可靠性,已经成为高 比例的风电、光伏接入微电网系统亟待解决的问题。 国内外学者针对该问题已经进行了相关研究。常规 方式是应用确定性方法处理可再生能源的随机性问 题,即利用储能装置或者常规电源平抑可再生能源 引起的波动功率。文献[2]提出了日前和实时2种 时间尺度下的调度策略,并利用蓄电池 SB(Storage Battery)和超级电容器 SC(Super Capacitor)对电能 进行时空平移来平抑由风电、光伏和负荷的预测误 差带来的波动功率,有效解决了波动功率对微电网 经济运行的影响。然而研究发现这类调度方法是以 高昂的运行成本为代价来解决源-荷不确定性对微

收稿日期:2021-06-25;修回日期:2022-01-27

在线出版日期:2022-04-20

基金项目:国家自然科学基金资助项目(52067021);新疆维吾 尔自治区重点研发计划项目(2020B02001)

Project supported by the National Natural Science Foundation of China(52067021) and the Key R&D Program of Xinjiang Uygur Autonomous Region(2020B02001) 电网经济运行的影响的,而且其误差较大,可靠性较 低。有学者提出将风电、光伏和负荷的实际出力表 示为确定的预测值和不确定的预测误差之和[3],从 而可以采用含不确定变量的优化模型制定调度计 划。通常用鲁棒优化、区间优化和随机优化模型对 不确定变量进行优化分析[4]。鲁棒优化在最劣条件 下满足系统约束,区间优化的优化场景中包含最劣 场景,所以二者的优化结果都比较保守,经济性相对 较差。而随机优化模型由于全面利用了不确定变量 的概率分布信息进行建模[5],此方法较好地将运行 成本和风险联系起来进行优化,所以可以更准确地 进行调度安排。其中,基于场景分析法^[6]的随机优 化模型根据不确定变量的概率分布函数抽样生成大 量场景,通过将原来不确定变量转化到确定性场景 中进行优化计算。文献[7]提出了一种基于场景分 析法的交直流混合微电网多时间尺度优化调度策 略,运用场景分析技术模拟风电、光伏以及负荷的不 确定性,有效抑制了微电网多重不确定性引发的功 率波动。上述文献关于风电、光伏的不确定性和负 荷波动的相关研究还存在如下不足:①部分学者在 多时间尺度下通过储能技术平抑微电网波动功率, 未对不确定变量进行建模分析;②采用较为保守的 不确定变量建模方法,过度地强调可靠性使得经济 性变差;③源-荷侧不确定变量对功率平衡方程的影 响不能再被忽视,而概率性功率平衡^[8]的研究成果 和相关文献还比较少,亟待深入研究。因此,提出一 种综合考虑多时间尺度下不确定变量建模、概率性 功率平衡以及混合储能功率动态分配策略的优化调 度方法是必要的。

基于此,本文建立了融合多场景的微电网日前--日内双级随机优化调度模型。在日前阶段,考虑了 微电网内风电、光伏、负荷等不确定性因素的影响, 利用多场景技术将风电、光伏和负荷的不确定出力 转化到确定的多个场景下进行分析;建立了机会约 束下含不确定变量的功率平衡方程,通过引入功率 不平衡量 σ将功率平衡方程的等式约束松弛为绝对 值不等式,使绝对值不等式在一定置信水平下满足 机会约束;此外,为了保障微电网安全稳定运行,建 立了基于机会约束的备用容量可靠性模型。在日内 阶段,提出了基于超短期预测数据的滚动调度模型, 通过自适应小波包算法对单个控制周期内的波动功 率进行分解,并由蓄电池、超级电容器和主网供电共 同完成对波动功率的平抑。最后,通过算例仿真验 证了所提模型的有效性。

1 微电网运行模型

1.1 多场景下风-光-负荷不确定性模型

本文采用多场景技术对风电、光伏和负荷功率 的不确定性进行建模。研究表明风速的变化服从韦 伯分布^[9],其概率密度函数为:

$$f(v) = \frac{k^*}{c} \left(\frac{v}{c}\right)^{k^*-1} \mathrm{e}^{-\left(\frac{v}{c}\right)^{k^*}} \tag{1}$$

式中:v为实际风速;c为尺度系数;k*为形状系数。

光照强度的变化服从 Beta 分布^[9],其概率密度 函数为:

$$f(r) = \frac{\Gamma(a^* + b^*)}{\Gamma(a^*) + \Gamma(b^*)} \left(\frac{r}{r_{\max}}\right)^{a^* - 1} \left(1 - \frac{r}{r_{\max}}\right)^{b^* - 1} \quad (2)$$

式中:*a*^{*}和*b*^{*}为Beta分布的形状参数;*r*和*r*_{max}分别为 每一时段内的实际光照强度和最大光照强度。

负荷的波动量服从正态分布^[10],其概率密度函数为:

$$f(\Delta P_{\rm L}) = \frac{1}{\delta \sqrt{2\pi}} e^{-\frac{(\Delta P_{\rm L}-\mu)^2}{2\delta^2}}$$
(3)

式中: μ 和 δ^2 分别为正态分布的期望和方差; ΔP_L 为负荷波动功率。

利用累积分布函数的逆函数生成如下随机变量:风电出力P_{wr}、光伏出力P_{pv}和负荷功率P_{Li}。为 了简化模型,需要用离散分布代替连续分布。本文 利用拉丁超立方采样^[11]LHS(Latin Hypercube Sampling)对原连续分布进行离散化处理,如式(4)所示。 由于LHS是一种典型的分层采样技术,所以其提高 了样本集对随机变量分布空间的覆盖程度。进而通 过蒙特卡洛模拟生成规模为M_s的场景集S来反映风 电、光伏和负荷的不确定性。

$$X_{m^{*}n^{*}} = F_{m^{*}}^{-1} \left(U_{n^{*}} \right) = F_{m^{*}}^{-1} \left(\frac{n^{*} - 0.5}{N^{*}} \right)$$
(4)

式中:X_{min}为随机变量,本文中特指风电、光伏出力

和负荷功率; $U_{n^*}=(n^*-0.5)/N^*$ 表示将[0,1]的概率 区间 N^* 等分后每一子区间的中点; n^* 为子区间序号。

由于利用LHS法得到的场景数量巨大,为了减小计算量,本文采用基于概率距离的快速前代法^[12] 实现场景缩减,缩减后的场景能够较真实地反映初 始场景。缩减后的场景集为*S**,场景集对应的概率 集为*p**,分别见式(5)和式(6)。

$$S^* = \{S_1^*, S_2^*, \cdots, S_b^*\}$$
(5)

$$p^* = \{p_1, p_2, \cdots, p_b\}$$
 (6)

式中:b为缩减后的场景数。

完成场景缩减后将风电、光伏和负荷对应的典型场景排列组合后得到组合典型场景,以供后续研究。组合场景数 C_b和组合场景概率 p_h,分别为:

$$C_{\rm h} = C_{\rm WT} C_{\rm PV} C_{\rm L} \tag{7}$$

$$p_{\mathrm{h},s} = p_{\mathrm{WT},s} p_{\mathrm{PV},s} p_{\mathrm{L},s} \tag{8}$$

式中:C_{wr}、C_{Pv}和C_L分别为风电、光伏和负荷场景缩减后的经典场景数;p_{wr.s}、p_{Pv.s}和p_{L.s}分别为风电、光伏和负荷场景缩减后经典场景s发生的概率。

1.2 考虑预测误差的微电网功率平衡

为保证微电网安全稳定运行,需要在微电网分 布式电源发出的总功率和负荷需求之间保持供需平 衡。现有微电网功率平衡约束多以风电、光伏等可 再生能源和负荷的预测数据为基础,为便于模型求 解而直接忽略预测误差,如式(9)所示。

$$\sum_{i=1}^{N_{\rm FV}} P_{\rm PV,\,i}^{\rm pre} + \sum_{i=1}^{N_{\rm WT}} P_{\rm WT,\,i}^{\rm pre} + P_{\rm grid} = \sum_{i=1}^{N_{\rm Li}} P_{{\rm Li},\,i}^{\rm pre} + P_{\rm b}$$
(9)

式中:下标*i*表示风电场、光伏电站或负荷的编号; $P_{WT,i}^{pre}$, 和 $P_{L,i}^{pre}$ 分别为风电、光伏和负荷的预测功 率; P_b 为蓄电池的充放电功率,充电时 $P_b>0$,放电时 $P_b<0$; P_{grid} 为微电网与主网交换的功率,购电时 $P_{grid}>0$, 售电时 $P_{grid}<0$; N_{WT} 、 N_{PV} 和 N_{Li} 分别为风电场、光伏电 站和负荷的数量。

高比例风电、光伏的接入对微电网功率平衡的 影响将不能再被忽略。考虑风电、光伏和负荷不确 定性的严格的功率平衡方程如式(10)所示,风电、光 伏出力和负荷功率的实际值用预测值与预测误差之 和来表示。

$$\sum_{i=1}^{N_{\rm pv}} \left(P_{\rm PV,i}^{\rm pre} + \boldsymbol{\varepsilon}_{\rm pv,i} \right) + \sum_{i=1}^{N_{\rm WT}} \left(P_{\rm WT,i}^{\rm pre} + \boldsymbol{\varepsilon}_{\rm wt,i} \right) + P_{\rm grid} = \sum_{i=1}^{N_{\rm Li}} \left(P_{\rm Li,i}^{\rm pre} + \boldsymbol{\varepsilon}_{\rm li,i} \right) + P_{\rm b}$$
(10)

式中: $\varepsilon_{\text{pv},i}$ 、 $\varepsilon_{\text{wt},i}$ 和 $\varepsilon_{\text{li},i}$ 分别为风电、光伏出力和负荷功率的预测误差。

由于风电、光伏出力和负荷功率预测误差的不确定性使得方程式(10)无法直接进行求解,本文利用场景分析法对其进行量化,根据风电、光伏出力和

负荷功率波动服从的概率分布生成多个场景,要求 在每个场景下达到电能的供需平衡。用 $P_{PV,i}^{s}+\varepsilon_{PV,i}^{s}$ 表示场景s下光伏的实际出力, $P_{WT,i}^{s}+\varepsilon_{wt,i}^{s}$ 表示场景s下风机的实际出力, $P_{Li,i}^{s}+\varepsilon_{Li,i}^{s}$ 表示场景s下总的负荷 功率,从而将含有不确定变量的随机优化模型转化 为确定性模型进行处理,功率平衡方程如下:

$$\sum_{i=1}^{N_{\text{WV}}} \left(P_{\text{PV},i}^{s} + \boldsymbol{\varepsilon}_{\text{pv},i}^{s} \right) + \sum_{i=1}^{N_{\text{WT}}} \left(P_{\text{WT},i}^{s} + \boldsymbol{\varepsilon}_{\text{wt},i}^{s} \right) + P_{\text{grid},s} = \sum_{i=1}^{N_{\text{Li}}} \left(P_{\text{Li},i}^{s} + \boldsymbol{\varepsilon}_{\text{li},i}^{s} \right) + P_{\text{b},s}$$
(11)

为了扩大本文所提优化模型的寻优范围,使其 在更广泛的空间寻找最优解,而不仅仅局限于满足 每个场景下严格的功率平衡等式约束,引入功率不 平衡量σ,对式(11)进行推广,将其松弛为式(12)所 示的绝对值不等式,当σ=0时,该绝对值不等式又可 退化成式(11)。

$$\left| \sum_{i=1}^{N_{\text{PV}}} \left(P_{\text{PV},i}^{s} + \varepsilon_{\text{pv},i}^{s} \right) + \sum_{i=1}^{N_{\text{WT}}} \left(P_{\text{WT},i}^{s} + \varepsilon_{\text{wt},i}^{s} \right) + P_{\text{grid},s} - P_{\text{b},s} - \sum_{i=1}^{N_{\text{Li}}} \left(P_{\text{Li},i}^{s} + \varepsilon_{\text{li},i}^{s} \right) \right| \leq \sigma \quad (12)$$

为了进一步提高源侧和负荷侧功率匹配的概率,本文提出了功率平衡的机会约束模型,使源--荷 在某一较高的置信水平下实现功率匹配,这种对功 率平衡的处理方式看似是降低了对功率平衡的限 制,实际上使得调度计划在除了缩减后剩余场景的 更多场景下达到"功率平衡",具体模型描述如式 (13)所示。

$$\Pr\left\{\left|\sum_{i=1}^{N_{\text{PV}}} \left(P_{\text{PV},i}^{s} + \varepsilon_{\text{pv},i}^{s}\right) + \sum_{i=1}^{N_{\text{WT}}} \left(P_{\text{WT},i}^{s} + \varepsilon_{\text{wt},i}^{s}\right) + P_{\text{grid},s} - P_{\text{b},s} - \sum_{i=1}^{N_{\text{Li}}} \left(P_{\text{Li},i}^{s} + \varepsilon_{\text{li},i}^{s}\right)\right| \leq \sigma\right\} \geq \beta \quad (13)$$

式中:Pr{·}为事件{·}成立的概率; β为多场景下式 (12)成立的置信水平,本文取0.99。

1.3 混合储能系统运行模型

本文所涉及的混合储能装置由蓄电池和超级电容器组成,蓄电池的平均使用寿命为6a(约6000次), 而超级电容器的使用寿命可达50万~100万次^[13],远高于蓄电池的寿命,故本文只研究蓄电池的寿命损 耗模型。

文献[14]研究发现蓄电池的充放电深度过大或 工作于低荷电状态下时将导致寿命损耗变大。因此 本文重点研究充放电深度和荷电状态对蓄电池寿命 损耗产生的影响,参照文献[15]建立蓄电池寿命损 耗成本模型如下:

$$\begin{cases} C_{\rm cha} = \frac{C_{\rm init}}{2N(x)} \frac{\lambda_{\rm cha}}{S_{\rm Cstart}} \frac{S_{\rm Cmax}}{S_{\rm Cend}} \\ C_{\rm dis} = \frac{C_{\rm init}}{2N(x)} \frac{\lambda_{\rm dis}}{S_{\rm Cend}} \frac{S_{\rm Cstart}}{S_{\rm Cmax}} \end{cases}$$
(14)

$$C_{\rm b}(t) = x_{\rm b}(t) C_{\rm cha}(t) + \bar{x}_{\rm b}(t) C_{\rm dis}(t)$$
 (15)

式中:t为时段编号;N(x)为充放电深度x下的最大循环次数; C_{cha} 、 C_{dis} 分别为充、放电过程对应的寿命 损耗成本; C_{init} 为蓄电池的一次投资成本; S_{Cstart} 、 S_{Cend} 和 S_{Cmax} 分别为蓄电池的初始荷电状态、终止荷电状 态和荷电状态上限值; λ_{cha} 、 λ_{dis} 分别为充、放电影响 因子; $C_b(t)$ 为t时段蓄电池的充放电寿命损耗成本; $x_b(t)$ 为表示t时段蓄电池充放电状态的变量,其值为 1时表示充电,为0时表示放电; $\bar{x}_b(t)$ 为 $x_b(t)$ 取反。

2 不同时间尺度下的优化调度

由于风电、光伏出力和负荷功率的日前预测精 度较差,因此本文建立了基于场景分析法的风光储 微电网多时间尺度随机优化调度模型,根据时间尺 度的不同分为日前调度和日内滚动调度。微电网双 级优化调度框图如图1所示。

日前调度考虑了风电、光伏出力和负荷功率的 随机性对调度的影响,采用基于场景分析法的随机 规划模型优化微电网日前出力。综合考虑分时电 价、蓄电池的寿命损耗以及可中断负荷量等因素,以

微电网运行的总成本最低为目标制定优化方案。调度的时间粒度为1h。日内滚动调度以日前多场景优化调度的期望调度值为基准,求取风-光-负荷超短期预测数据与基准值之间的波动量,利用自适应小波包分解算法提取波动量的高、低频功率成分,由蓄电池、超级电容器和主网供电共同平抑。日内滚动调度时间粒度为5min,单次控制周期为1h,但只将本控制周期内第一个5min的调度指令下发执行。日内滚动优化每5min向前滚动一次,共执行288次。超级电容器不参与日前调度。

2.1 基于多场景技术的日前随机优化调度

2.1.1 日前调度优化目标

日前调度优化目标如下:

 C_{σ}

$$f = \min \sum_{s=1}^{C_{\rm h}} p_{\rm h,s} \sum_{t=1}^{T} \left(C_{\rm grid}(t) + C_{\rm grid,R}(t) + C_{\rm b}(t) - C_{\rm se}(t) \right) (16)$$

$$_{\rm rid}(t) = x(t) P_{\rm grid}(t)$$
(17)

$$C_{\text{grid, R}}(t) = x'(t) P_{\text{grid, R}}(t)$$
(18)

$$C_{se}(t) = \sum_{i=1}^{N_{LI} \to m} x(t) P_{i}(t) + \sum_{i=1}^{M} (\alpha_{i} x_{j}(t) x(t) - \beta_{j} \overline{x}_{j}(t)) P_{L,j}(t)$$
(19)

式中:T为一天内的总时段数; $C_{grid}(t)$ 和 $C_{grid,R}(t)$ 分别 为t时段的购售电成本和购买备用容量成本;x(t)和x'(t)分别为t时段微电网向主网的购售电电价和 购买备用电价; $P_{grid,R}(t)$ 为t时段微电网向主网购买 的备用容量; $C_{se}(t)$ 为t时段向负荷售电的收益;M为可中断负荷数量;下标j表示可中断负荷的编号; $P_i(t)$ 为t时段常规负荷功率; $P_{L,j}(t)$ 为t时段可中断 负荷功率; x_j 为表示可中断负荷状态的变量,其值 为1时表示中断,为0时表示接入; \bar{x}_j 为 x_j 取反; α_j 为可 中断负荷的电价折扣系数,参考文献[16]取25%; β_j 为可中断负荷的中断赔偿系数,参考文献[17]取 0.978元/(kW·h)。

2.1.2 日前调度约束条件

1) 蓄电池运行约束。

$$P_{\min} + P_{sb,R}(t) < P_{b}(t) < P_{\max} - P_{sb,R}(t)$$

$$S_{SOCb,\min} + S_{SOCb,R} \leq S_{SOCb}(t) \leq S_{SOCb,\max} - S_{SOCb,R}$$

$$S_{SOCb}(t) = \frac{E_{b}^{0} + \int_{0}^{t} (\eta_{c,b} P_{c,b}(t) - P_{d,b}(t) / \eta_{d,b}) dt}{E_{b}} \qquad (20)$$

$$S_{SOCb}(0) = S_{SOCb}(24)$$

式中: P_{min} 和 P_{max} 分别为蓄电池的充放电功率最小值 和最大值; $P_{sb,R}(t)$ 为t时段蓄电池预留的备用容量; $S_{socb}(t)$ 为t时段蓄电池的荷电状态; $S_{socb,max}$ 、 $S_{socb,min}$ 和 $S_{socb,R}$ 分别为蓄电池荷电状态的上、下限和裕量; E_b^0 和 E_b 分别为蓄电池的初始容量和总容量; $\eta_{c,b}$ 和 $\eta_{d,b}$ 分别为蓄电池的充、放电效率; $P_{c,b}(t)$ 和 $P_{d,b}(t)$ 分 别为t时段蓄电池的充、放电功率。

2)联络线最大功率约束。

 $P_{\text{grid, min}} + P_{\text{grid, R}}(t) < P_{\text{grid}}(t) < P_{\text{grid, max}} - P_{\text{grid, R}}(t)$ (21) 式中: $P_{\text{grid, min}} \pi P_{\text{grid, max}}$ 分别为微电网与主网交换功率 的最小值和最大值。

2.1.3 基于机会约束的可靠性模型

不确定因素给微电网的安全稳定运行带来了失 负荷风险,而某些极端场景出现的概率较低,如果预 留较大的备用容量去应对所有极端情况的发生,将 极大地降低系统运行的经济性,因此需要兼顾系统 运行的经济性和可靠性。本文采用机会约束构建可 靠性约束模型,使微电网在一定的置信水平下满足 系统的可靠运行条件,具体描述如下:

$$\Pr\left\{P_{\mathrm{R}}(t) + \sum_{i=1}^{N_{\mathrm{WT}}} \varepsilon_{\mathrm{wt},i}(t) + \sum_{i=1}^{N_{\mathrm{PV}}} \varepsilon_{\mathrm{pv},i}(t) - \sum_{i=1}^{N_{\mathrm{Li}}} \varepsilon_{\mathrm{Li},i}(t) \ge P_{\mathrm{R, need}}(t)\right\} \ge \alpha \qquad (22)$$

$$P_{\rm R}(t) = P_{\rm sb, R}(t) + P_{\rm grid, R}(t)$$
(23)

式中: α 为备用容量满足的置信水平; $P_{\text{R, need}}(t)$ 为t时 段微电网系统所需的备用容量; $P_{\text{R}}(t)$ 为t时段系统 所能提供的总备用容量。

2.2 日内滚动调度建模

2.2.1 基于自适应小波包分解的波动功率平抑策略

由于风-光-负荷的预测精度随时间尺度的减 小而提高,因此本文利用微电网超短期预测数据对 日内调度进行滚动优化。因超短期预测不是本文研 究重点,故不再赘述。根据上文所述,应用自适应小 波包分解算法实现对风电、光伏出力和负荷功率超 短期预测值与日前调度基准值之间波动量的分解。 以3层小波包算法为例进行分析说明,其分解树如 附录A图A1所示,图中S表示波动功率。采样频率 为1/12 Hz,在n层分解下原始信号S被分成了2°个 频段,每个频段的宽度f₀如式(24)所示。小波包分 解和重构信号的算法见文献[18]。

$$f_0 = (1/12)/2^{n+1} \tag{24}$$

根据谷、平、峰不同时段电价的差异制定了功率 波动平抑策略,旨在实现日内调整费用最小化。首 先将一天分为288个滚动周期,滚动步长为5 min, 单个控制周期为1 h,由于 $S_{n,0}$ 频段 $(0 \sim f_0)$ 是波动功 率能量集中区,因此根据t时段波动功率能量集中的 频段来确定t时段的初始分解层数n。在每个时段 根据不同的情况动态调整分解层数n和功率重构的 高低频分界点m,使得功率调整的成本最低。具体 调整策略如附录A图A2所示。

2.2.2 日内滚动调度优化目标

日内滚动调度以日前调度计划调整费用最低为 优化目标,如式(25)所示。

$$\min f_{\mathrm{adj}} = \sum_{t=1}^{I} \left(C_{\mathrm{sb, adj}} P_{\mathrm{sb, adj}}(t) + C_{\mathrm{grid, adj}} P_{\mathrm{grid, adj}}(t) \right) \quad (25)$$

式中: $P_{sb,adj}(t)$ 和 $P_{grid,adj}(t)$ 分别为t时段蓄电池功率 和主网供电功率的调整量; f_{adj} 为日前调度计划调整 费用; $C_{sb,adj}$ 和 $C_{grid,adj}$ 分别为蓄电池和主网供电的计 划调整费用。约束条件如式(26)所示,超级电容器 的约束条件和蓄电池的类似,不再赘述。

$$\begin{cases} P_{\rm sb, adj}(t) \leq P_{\rm sb, R}(t) \\ P_{\rm grid, adj}(t) \leq P_{\rm grid, R}(t) \end{cases}$$
(26)

3 优化算法

上述混合储能系统经济运行的优化模型是一个 多变量、非线性优化问题,而自适应粒子群优化算法 具有实现容易、精度高、收敛快等优点。本文将蒙特 卡洛模拟和自适应粒子群优化算法相结合,对含有 随机变量的机会约束模型进行求解。首先对随机变 量进行 N 次模拟,然后与决策变量一起代入式(13) 和式(22),若满足约束的次数 N'与模拟总次数 N 的 比值 N'/N大于给定的置信水平,根据大数定理,当 N 足够大时,则认为式(13)和式(22)成立。算法流程 图如附录 A 图 A3 所示。具体优化步骤如下。

步骤1:按照1.1节所提方法进行场景生成、场 景缩减和典型场景组合。其中利用蒙特卡洛模拟进 行多场景生成的具体参数如下:由文献[19]可知, $P_{\rm wr}$ 的均值和标准差决定形状系数 k^* 和尺度系数c的 取值,而文献[20]指出可以将风电场每个时段内风 机有功出力的预测值作为均值,将均值的一个百分 比作为标准差,一般取预测误差值。系数 a^* 、 b^* 、 μ 和 δ 的取值方法类似, $P_{\rm wr}$ 、 $P_{\rm Pv}$ 和 $P_{\rm Li}$ 的日前预测误差分 别取 30%、30% 和10%。

步骤2:备用容量优化。蓄电池和主网供电预 留的备用容量需要满足经济性和可靠性的双重标 准,故需要对2.1.3节的决策变量P_{sb.R}(t)和P_{grid,R}(t) 进行优化,然后用蒙特卡洛模拟生成多个场景对 最终的优化结果进行校验,并将优化结果P_{sb.R}(t)和 P_{grid,R}(t)代人式(22)和式(23),对步骤3中的粒子 P_{grid,s}和P_{b.s}进行约束。关于备用容量的优化可参考 文献[20],故本文不再赘述。

步骤3:利用自适应粒子群优化算法优化决策 变量P_{grid.s}和P_{b.s}。初始化粒子群优化算法的相关参数,以成本的期望值最小为优化目标开始寻优,迭代 过程中粒子P_{grid.s}和P_{b.s}需要满足式(12)所示的功率 平衡约束条件。种群规模设为500,迭代次数为 200,个体学习因子和群体学习因子均取1.45,惯性 权重采用线性递减方式,初始惯性因子取0.9,最终 惯性因子取0.4。

步骤4:功率平衡方程式(13)的校验。当自适

应粒子群优化算法迭代结束后需要对经典组合场景下变量 P_{grid,s}和 P_{d,s}的期望进行校验,确认其能够在 1.1节中的 M_s个场景下满足置信水平 β,最终输出优 化结果。

4 算例分析

为了简化问题的分析,本文在各个时段内进行 如下假设:

1) 微电网同主网交换的功率及电价恒定且购、 售电电价相同;

2)购买备用的容量和功率恒定;

3)对于电负荷而言,因可中断负荷服从调度安 排,因此只考虑固定负荷功率预测的不确定性。

4.1 基础数据

微电网的能源结构如图 2 所示。微电网相关 运行参数见附录 B 表 B1;实时电价和旋转备用价 格见附录 B 表 B2;按照电价将一天分为谷、平、峰时 段,对应的时段划分见附录 B 表 B3;生成日前场景 时取场景集的规模 *M*_s=10 000,缩减后风电、光伏 出力和负荷功率的场景数均为5;功率不平衡量σ= 4.0 kW。

图 2 微电网能源架构 Fig.2 Microgrid energy architecture

4.2 日前随机优化调度分析

4.2.1 多场景下置信水平α对优化结果的影响

多场景下的随机优化模型中,置信水平α用以 表征机会约束下的系统可靠性,波动率k则反映了 风电、光伏出力以及负荷功率的预测精度。表1给 出了k=10%时不同置信水平α下系统的运行成本、 求解时间以及负荷中断量。

由表1可知,系统的运行成本受α的影响较大, 当置信水平α较低时,对应的系统运行成本也相对 较低,而当置信水平α超过96%时,系统运行成本显 著增大,这是因为随着置信水平的提高,系统所需的 备用容量也随之增大,在电价峰时段当蓄电池预留 的备用达到上限时从主网购买的备用容量较大。当 置信水平超过99%时,由于电网可购买的备用和储 能可预留的备用被最大化利用后仍然不能满足系统

表1 不同置信水平下的运行结果

Table 1	Operation	results	under	different
	aanfida	noo lou	ala	

confidence levels			
α / %	运行成本 / 元	求解时间 / s	负荷中断量 / kW
80	4884	50.2	0
85	4908	53.5	0
87	4954	57.6	0
90	5011	64.4	0
92	5112	73.5	0
96	5443	99.8	0
99	5886	124.6	5.6
100	6377	155.7	9.8

运行的可靠性要求,进行部分负荷中断"高赔偿"导 致运行成本跳跃式增大。

4.2.2 风光储微电网日前随机优化调度结果分析

风电、光伏和负荷缩减后的场景集分别如附录 C图C1—C3所示。图3为α=80%、β=99%、k=10% 时的风光储微电网日前随机优化调度结果。

结合图3、附录C图C1—C3和附录B表B2可 知:在00:00—08:00时段,风电、光伏出力略高于负 荷需求,同时电价相对较低,微电网在满足负荷需求 后从主网购电向蓄电池充电;在09:00—17:00时段, 电价相对较高,风电、光伏出力同负荷需求基本持 平,蓄电池持续放电向主网售电;在19:00—21:00时 段,负荷达到一天的高峰期,微电网从主网购电同蓄 电池一起补充负荷缺额功率;在一天内最后几个时 段,为了使蓄电池的始末荷电状态保持一致,持续对 其进行充电。综上可知,蓄电池不仅发挥了"削峰填 谷"的作用,而且"低储高发"实现了套利。

此外,基于预测数据的确定性模型与多场景下 的随机优化模型相比,前者日前调度成本为4754 元,后者日前调度成本为4884元。这是由于多场景 下的随机优化模型考虑了风电、光伏出力和负荷功 率的不确定性,调度计划具有更强的鲁棒性,因此调 度成本也相应增加了2.7%,能够较好地满足微电网 运行经济性和鲁棒性的要求。而采用确定性模型时 虽然日前调度成本更低,但其未考虑风电、光伏出力 和负荷功率的预测误差,增加了日内调度的成本和 压力。此外,采用随机优化模型时的求解时间为 50.2 s,而采用确定性模型时为3.1 s,这是因为随机 优化模型需要在日前生成的多个场景下进行优化计 算,因此需要更长的求解时间,但仍然能够满足日前 调度的时间要求。

4.2.3 不同功率平衡方程对优化结果的影响

为了分析含风电、光伏出力和负荷功率预测误差的功率平衡方程对日前调度结果的影响,本文在基于多场景技术的日前随机优化调度中引入功率 平衡方程的机会约束模型。构建以下3种模型对功 率平衡约束分别进行了不同的处理,为了验证本文 所提模型的有效性,分别对以下3种模型进行仿真 分析。

模型1:基于预测数据的确定性日前调度模型。 功率平衡方程中忽略了风电、光伏出力以及负荷功 率的预测误差,直接利用预测数据作为功率平衡约 束,如式(9)所示。

模型2:基于多场景的随机优化模型。功率平 衡方程需要在每个组合经典场景中严格成立,如式 (11)所示。

模型3:多场景下基于机会约束的随机优化模型。首先将功率平衡方程松弛为绝对值不等式,允许存在一定的功率不平衡量,然后使该绝对值不等式在某一置信水平下满足机会约束,如式(13)所示。

在上述3种优化调度模型中,约束条件和目标 函数均一致,分别对3种模型进行仿真验证。

为了比较3种模型对应功率平衡约束的效果, 根据1.1节所提方法生成10000个风电、光伏出力和 负荷功率的场景,模拟真实场景对日前3种模型最 终的优化结果进行检验。3种调度模型下最优方案 模拟运行的电能供需偏差统计如图4所示。

由图4可知,模型3的最优调度方案在10000 个场景中模拟运行的电能供需偏差集中分布在-5~ 5 kW之间,而模型1、2的偏差分布明显向左偏移,超 过-5 kW的场景数量明显增多,说明模型3有较强的 适应性,能够在更多的场景下保持较小的电能供需 偏差,验证了本文所提方法能够应对更多场景下风 电、光伏和负荷不确定性造成的功率波动。模型2 的供需偏差比较接近模型3,同时明显小于模型1, 这说明多场景下的优化调度结果与常规直接按照预 测数据得到的调度方案相比具有更强的鲁棒性。

附录 C 图 C4 给出了不同功率不平衡量 σ 对电 能供需偏差的影响。由图可知,随着 σ 的增大,电能 供需偏差曲线开始从横坐标0的两侧向内收缩且幅 值增大,即在更多的场景下电能供需偏差稳定在较 小的区间[-5,5] kW内,而当 σ >4 kW时电能供需 偏差曲线呈现出相反的变化趋势。这是由于放宽 源-荷之间的功率平衡约束之后,满足可行集的场景 数量增加,使得最优调度方案能够在更多的场景下 满足"功率平衡",而当 σ 取值过大时会增大源-荷的 功率不匹配度。综上分析, σ 需要在合适的范围内 取值,其取值太小会增大电能供需偏差,太大则会增 加日内调度的压力和调整的费用,本文中 σ =4 kW 时电能的供需偏差最小,因此按照模拟场景中电能 供需偏差确定 σ 值较为合理。

4.3 日内滚动调度优化分析

风电、光伏和负荷的日内超短期预测数据如附录C图C5所示,分辨率为5min。表2为不同功率不 平衡量*o*下的系统运行成本。

\mathbf{x}_{2} 个回切率个半衡重 σ 下的连行风 a
--

Table 2 Operating costs under different values of σ

σ / kW	日前调度成本 / 元	日内调整成本 / 元	综合成本 / 元
1.5	5087	86	5173
2.0	4997	97	5094
2.5	4966	125	5 0 9 1
3.0	4954	132	5086
3.5	4897	158	5055
4.0	4884	165	5049
4.5	4780	278	5058
5.0	4692	393	5 0 8 5

由表2可知,在α=80%、β=99%、k=10%的前提 下,随着σ的增大,日前调度成本呈现减小的趋势, 而日内调整成本显著增大,对日前和日内滚动调度 的优化结果进行综合分析发现在功率不平衡量σ= 4.0 kW时,所得的方案综合运行成本最低。进一步 验证了4.2.3节所提按照电能供需偏差选择σ值的 合理性。同时与本文的理论分析相符,即当功率 不平衡量σ值增大时,满足式(12)的解集越多,其对 应的解集中越容易出现使日前调度成本最低的最 优解,但另一方面,增大σ必然导致日内调整成本 增大。

图5为功率不平衡量σ=4.0kW时日内的功率调整曲线。由图可知,在日内利用自适应小波包提取 高低频功率分量后,由蓄电池、超级电容器和主网供 电共同平抑波动功率。蓄电池和主网供电承担低频 功率成分,超级电容器承担高频功率成分。在谷、平 电价时段,微电网从主网购买备用的成本较低,主要 由主网供电平抑更多的低频功率成分,而在峰电价时段,由蓄电池平抑所有的低频功率分量,通过在每个时段寻找最优的小波包分解层数n和高低频分界点m,使得最终的优化结果在保证系统可靠性的同时提高经济性。

图5 日内功率调整曲线

Fig.5 Intraday power adjustment curves

采用以上方式在日内平抑波动功率时,通过调整小波包分解层数n和高低频分界点m对偏差的调整量有限。当蓄电池、超级电容器和主网供电最大出力仍不能满足调整需求时,可适当调整日前的调度计划,如图6所示。可见18:00—20:00时段为负荷高峰期,此时调整m和n已无法满足对波动功率的平抑,为了保证系统可靠运行的同时兼顾经济性,在18:00—20:00时段电价相对较低,增加微电网向主网的购电量,而在20:00—22:00时段,电价相对较高,增加蓄电池的放电来调整日前调度计划。经过对日前调度计划的轻微调整,使得波动功率可以得到有效平抑,从而保证了日内调度按照日前计划有序进行。

图6 日前调度计划调整

5 结论

微电网系统接入高比例的风电、光伏等可再生 能源给系统的安全可靠运行带来了诸多不确定性因 素。为此,本文提出了计及源--荷预测不确定性的微 电网双级随机优化调度模型。通过算例分析验证了 所提模型的有效性,并得到以下结论。

1)本文所提的随机优化模型与确定性模型相比,调度计划鲁棒性更强,调度成本也相应地增加了
 2.7%,但仍在合理的范围内。

2)置信水平α和波动率k的取值对备用容量影 响较大,算例结果表明,随着置信水平的提高,系统 的可靠性随之提高,但调度成本显著增大,因此需要 在经济性和系统的安全性之间进行一定的权衡,选 取合适的置信水平。

3)本文所提模型3对于功率平衡方程的处理在 多个场景的测试中供需偏差更小,达到了在更多场 景下的"功率平衡";功率不平衡量σ也需要在合理 的范围取值以保证调度结果满足更多的普遍场景。

4)日内滚动调度侧重于微电网运行的安全性, 按照本文所提调度策略能够有效消除网内波动功 率,且通过适当调整日前调度计划能够使系统按照 预期出力安排有序进行。

基于场景分析法的随机优化模型在求解效率方 面仍然有很大的提升空间,笔者将在今后的研究中 进行进一步的改善。

附录见本刊网络版(http://www.epae.cn)。

参考文献:

- [1] NA M, KIM J O. Optimal sizing and location of renewable energies in a microgrid[J]. New & Renewable Energy, 2019, 15(1):55-61.
- [2] 刘方,杨秀,时珊珊,等.不同时间尺度下基于混合储能调度的 微网能量优化[J]. 电网技术,2014,38(11):3079-3087.
 LIU Fang, YANG Xiu, SHI Shanshan, et al. Hybrid energy storage scheduling based microgrid energy optimization under different time scales[J]. Power System Technology, 2014, 38 (11):3079-3087.
- [3]梁海平,程子玮,孙海新,等. 计及风电预测误差不确定性的风电参与网架重构优化[J]. 电力系统自动化,2019,43(7):151-158,184.
 LIANG Haiping, CHENG Ziwei, SUN Haixin, et al. Optimiza-

tion of power network reconstruction with wind farm considering uncertainty of wind power prediction error [J]. Automation of Electric Power Systems, 2019, 43(7):151-158, 184.

- [4] QIU H F, GU W, XU Y L, et al. Interval-partitioned uncertainty constrained robust dispatch for AC / DC hybrid microgrids with uncontrollable renewable generators [J]. IEEE Transactions on Smart Grid, 2019, 10(4):4603-4614.
- [5] 郑义,白晓清,苏向阳.考虑风电不确定性的Φ-散度下基于条件风险价值的鲁棒动态经济调度[J].电力自动化设备,2021,41(2):63-70.
 ZHENG Yi,BAI Xiaoqing,SU Xiangyang. Robust dynamic economic dispatch considering uncertainty of wind power based on conditional value-at-risk under Φ-divergence [J]. Electric Power Automation Equipment,2021,41(2):63-70.
- [6] LI W H, WANG R, ZHANG T, et al. Multi-scenario microgrid optimization using an evolutionary multi-objective algorithm
 [J]. Swarm and Evolutionary Computation, 2019, 50: 100570.
- [7]魏斌,韩肖清,李雯,等.融合多场景分析的交直流混合微电网 多时间尺度随机优化调度策略[J].高电压技术,2020,46(7): 2359-2369.

WEI Bin, HAN Xiaoqing, LI Wen, et al. Multi-time scale stochastic optimal dispatch for AC / DC hybrid microgrid incorporating multi-scenario analysis[J]. High Voltage Engineering, 2020,46(7):2359-2369.

 [8] 康重庆,姚良忠.高比例可再生能源电力系统的关键科学问题 与理论研究框架[J].电力系统自动化,2017,41(9):1-11.
 KANG Chongqing, YAO Liangzhong. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9):1-11.

- [9] LI Y, YANG Z, LI G Q, et al. Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1565-1575.
- [10] ORITI G, ANGLANI N, JULIAN A L. Hybrid energy storage control in a remote military microgrid with improved supercapacitor utilization and sensitivity analysis[J]. IEEE Transactions on Industry Applications, 2019, 55(5): 5099-5108.
- [11] FAZLALIPOUR P, EHSAN M, MOHAMMADI-IVATLOO B. Risk-aware stochastic bidding strategy of renewable microgrids in day-ahead and real-time markets[J]. Energy, 2019, 171:689-700.
- [12] 李国庆,李欣彤,边竟,等. 计及光伏-负荷预测不确定性的直流跨省互联电网双级调度策略[J]. 中国电机工程学报,2021, 41(14):4763-4776.

LI Guoqing, LI Xintong, BIAN Jing, et al. Two level scheduling strategy for inter-provincial DC power grid considering the uncertainty of PV-load prediction [J]. Proceedings of the CSEE, 2021, 41(14):4763-4776.

 [13] 李东东,徐连连,刘翔,等.考虑可削减负荷参与的含风光储 微网经济优化调度[J].电力系统保护与控制,2017,45(2): 35-41.

LI Dongdong, XU Lianlian, LIU Xiang, et al. Optimal dispatching of microgrid considering the participation of reducible loads, distributed generators and energy storage units [J]. Power System Protection and Control, 2017, 45(2):35-41.

- [14] 刘忠,杨陈,蒋玮,等. 基于一致性算法的直流微电网储能系统 功率分配技术[J]. 电力系统自动化,2020,44(7):61-69.
 LIU Zhong, YANG Chen, JIANG Wei, et al. Consensus algorithm based power distribution technology for energy storage system in DC microgrid [J]. Automation of Electric Power Systems,2020,44(7):61-69.
- [15] 边晓燕,孙明琦,许家玉,等. 计及灵活性储备的含风电多微电网系统分布式协调调控策略[J]. 电力自动化设备,2021,41 (8):47-54,104.
 BIAN Xiaoyan,SUN Mingqi,XU Jiayu,et al. Distributed coordinated dispatch and control strategy of multi-microgrid system with wind power considering flexibility reserve[J]. Electric Power Automation Equipment,2021,41(8):47-54,104.
- [16] 吴集光,刘俊勇,段登伟,等.电力市场下实用可中断负荷补 偿机制研究[J].四川大学学报(工程科学版),2005,37(1): 90-95.

WU Jiguang, LIU Junyong, DUAN Dengwei, et al. A practical compensation mechanism for the interruptible loads in the power market environment[J]. Journal of Sichuan University (Engineering Science Edition), 2005, 37(1):90-95.

- [17] 孔祥清.可中断负荷参与系统备用的研究[D].成都:西华大学,2012.
 KONG Xiangqing. A study of interruptible load participating in system reserve[D]. Chengdu:Xihua University,2012.
- [18] SUN Y S, TANG X S, SUN X Z, et al. Microgrid tie-line power fluctuation mitigation with virtual energy storage[J]. The Journal of Engineering, 2019(16):1001-1004.
- [19] 王思明,牛玉刚,方磊,等.考虑新能源出力不确定性的微网社
 区双阶段调度策略[J].电力系统保护与控制,2018,46(17):
 89-98.

WANG Siming, NIU Yugang, FANG Lei, et al. Dual stage scheduling strategy for microgrid community considering uncertainty of renewable energy[J]. Power System Protection and Control, 2018, 46(17):89-98.

[20] 贺飞. 化学反应算法在含风电的电力系统动态经济调度中的 应用[D]. 长沙:湖南大学,2017.

HE Fei. The research of dynamic economic dispatch integrated with wind power system based on chemical reaction optimization algorithm[D]. Changsha:Hunan University, 2017.

作者简介:

吕海鹏(1994—),男,硕士研究生,主要研究方向为风光 储微电网容量优化配置和经济运行(E-mail:lvhaipengxd@

163.com);

希望·阿不都瓦依提(1967—),男,副 教授,博士,主要研究方向为多种可再生能 源互补发电(E-mail:xiwang_x@126.com); 孟令鹏(1996—),男,硕士研究生,主要 研究方向为电力电子与电力传动(E-mail: 1455617299@qq.com)。

(编辑 李玮)

Two-level stochastic optimal scheduling of microgrid considering uncertainty of source-load prediction

LÜ Haipeng, XIWANG · Abuduwayiti, MENG Lingpeng

(School of Electrical Engineering, Xinjiang University, Urumqi 830002, China)

Abstract: The access of high permeability of renewable energy to wind-solar-storage microgrid poses a huge challenge to its economic operation. To solve this problem, the two-level scheduling strategy of microgrid considering uncertainty of source-load prediction is proposed. In the day-ahead scheduling stage, the stochastic optimal scheduling model based on multi-scenario technology is constructed taking the minimum expected operating cost in multi-scenarios as the optimization objective. The scenario analysis method is used to analyze the day-ahead prediction of wind power and photovoltaic, together with load demand. Then, the power balance equation with uncertain variables in multi-scenarios is established, and it is relaxed to inequality and used as a random event to satisfy the chance constraint with high probability. In addition, the reliability constraint model of spinning reserve capacity is constructed by chance-constrained programming, so that the microgrid can operate reliably at a certain confidence level. In the intra-day scheduling stage, an intra-day rolling scheduling model combined with an adaptive wavelet packet algorithm is proposed. The adaptive wavelet packet algorithm is used to dynamically extract the power deviation between the ultra-short-term prediction data in each control cycle and the day-ahead scheduling plan, which is suppressed by the battery, supercapacitor and main grid.

Key words:stochastic optimization;chance constraint;multi-scenario technology;adaptive wavelet packet algorithm;hybrid energy storage

图 A2 日内波动功率调控策略

Fig.A2 Control strategy of intraday fluctuation power

图 A2 中, $P_{sb,adj}(t)$ 和 $P_{grid,adj}(t)$ 分别为 t 时段蓄电池功率和主网供电功率的调整量; $P_{sc}(t)$ 为 t 时段内超级 电容器的目标功率。

图 A3 结合蒙特卡洛模拟的自适应粒子群优化算法

Fig.A3 Adaptive particle swarm optimization algorithm combined with Monte Carlo simulation

附录 B

表 B1 微电网运行参数

Table B1 Operation parameters of microgrid

元件	参数	数值
风电	有功功率上限/kW	100
光伏	峰值功率/kW	20
各苔	峰值功率/kW	100
贝何	可中断负荷/kW	30
联络线	有功功率上限/kW	35
	额定容量/(kW h)	150
	额定功率/kW	30
蓄电池	一次投资成本/万元	130
	初始 SOC	0.5
	SOC 上下限	[0.2,0.85]
	额定容量/(kWh)	40
却如由索服	额定功率/kW	120
超级电谷奋	初始 SOC	0.5
	SOC 上下限	[0.2,0.9]

Table B2 Spot price of energy and spinning reserve					
时段/h	实时电价/	旋转备用价格/	时段/h	实时电价/	旋转备用价格/
	[兀 · (kW h)]	[兀 · (kW h) ⁻¹]		[兀 · (kW h)]	[兀 · (kW h)]
1	0.24	0.13	13	0.99	0.49
2	0.18	0.11	14	1.49	0.74
3	0.13	0.06	15	0.99	0.51
4	0.10	0.06	16	0.79	0.49
5	0.03	0.02	17	0.40	0.28
6	0.17	0.20	18	0.36	0.24
7	0.27	0.17	19	0.36	0.13
8	0.39	0.11	20	0.41	0.10
9	0.52	0.22	21	0.44	0.15
10	0.53	0.30	22	0.35	0.15
11	0.81	0.44	23	0.30	0.17
12	1.00	0.58	24	0.23	0.13

表 B2 实时电价和旋转备用价格

表 B3 时段划分

Table B3 Time division

时段	时段划分
谷时期	00:00—08:00、 23:00—00:00
平时期	08:00—11:00、 16:00—23:00
峰时期	11:00-16:00

附录 C

图 C1 负荷日内典型场景集 Fig.C1 Intraday representative scenarios of loads

图 C4 不同功率不平衡量下最优调度方案模拟运行时电能供需偏差统计 Fig.C4 Power deviation statistics of optimal scheduling scheme under different unbalanced power

图 C5 日内超短期预测数据 Fig.C5 Intraday ultra-short-term forecast data