引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2095次   下载 2 本文二维码信息
码上扫一扫!
基于二阶BP神经网络的旋转机械故障的智能诊断
朱翔,吴贻鼎,魏炜
作者单位
摘要:
针对旋转机械故障的智能诊断问题,提出了结合二阶BP神经网络和模糊网络的集成诊断方法。系统由信号处理子系统和故障诊断子系统两大部分组成。信号子系统负责信号的提取和预处理,诊断子系统则是诊断的核心,不同信号送入不同子神经网络进行诊断,结果通过决策神经网络进行数据融合,做出最后的诊断。该系统具有知识自动获取、识别速度快、鲁棒性及容错能力强等特点。实例证明该系统是有效的。
关键词:  二阶BP神经网络 智能诊断 数据融合 集成神经网络
DOI:
分类号:TM307 TP183
基金项目:
Intelligent fault diagnosis of rotating machinery based on two-order BP neural network
ZHU Xiang  WU Yi-ding  WEI Wei
Abstract:
An intelligent fault diagnosis method for rotating machinery is presented,which integrates two-order backpropagation neural network and fuzzy neural network.It consists of signal processing subsystem and diagnostic subsystem.The signals are extracted and preprocessed in the signal pro-cessing subsystem.The diagnostic subsystem is the core,in which different signals are loaded into different sub-neural networks and diagnosed,then the results are sent into decision-making neural network for data fusion and last diagnosis decision.The system obtains knowledge automatically and has the features of fast recognition,better robusticity and error-tolerance.Example test shows its effectiveness.
Key words:  two-order backpropagation neural network,intelligent diagnosis,data fusion,inte-grated neural network

用微信扫一扫

用微信扫一扫