引用本文:覃海,姬源,周川梅,陈胜,黄锦波,郑杰辉,李志刚.计及控制设备动作次数约束的三阶段动态无功优化算法[J].电力自动化设备,2018,(9):
QIN Hai,JI Yuan,ZHOU Chuanmei,CHEN Sheng,HUANG Jinbo,ZHENG Jiehui,LI Zhigang.Three-stage dynamic reactive power optimization algorithm considering constraints of control device action times[J].Electric Power Automation Equipment,2018,(9):
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4335次   下载 1865  
计及控制设备动作次数约束的三阶段动态无功优化算法
覃海1, 姬源1, 周川梅1, 陈胜1, 黄锦波2, 郑杰辉2, 李志刚2
1.贵州电网有限责任公司 电力调度控制中心,贵州 贵阳 550002;2.华南理工大学 电力学院,广东 广州 510640
摘要:
为了避免控制设备频繁操作,动态无功优化模型需考虑无功补偿装置投切开关及变压器抽头的允许动作次数约束。但是,动态无功优化属于大规模、多时段、强耦合的混合整数非线性规划问题,对其直接求解是困难的。建立了以有功网损最小为目标函数的动态无功优化模型,并提出一种实用的三阶段动态无功优化算法,该算法的核心是一种具有多项式计算复杂度的前推-回推式动态规划算法。将计及控制设备动作次数约束的动态无功优化问题的求解分解为多个时间断面的连续无功优化计算、理想无功补偿装置无功补偿功率曲线和变压器变比曲线的阶梯化以及在确定各个时段的无功补偿容量和变压器变比情况下的连续无功优化计算3个阶段。对IEEE 30节点系统和某实际区域电网进行测试,结果验证了所提算法的合理性和实用性。
关键词:  动态无功优化  动作次数约束  三阶段算法  离散化  混合整数非线性规划  模型
DOI:10.16081/j.issn.1006-6047.2018.09.026
分类号:TM761
基金项目:
Three-stage dynamic reactive power optimization algorithm considering constraints of control device action times
QIN Hai1, JI Yuan1, ZHOU Chuanmei1, CHEN Sheng1, HUANG Jinbo2, ZHENG Jiehui2, LI Zhigang2
1.Power Dispatch and Control Center, Guizhou Power Grid Co.,Ltd.,Guiyang 550002, China;2.School of Electric Power, South China University of Technology, Guangzhou 510640, China
Abstract:
In order to avoid the frequent operation of control devices, the allowable action time constraints of fling-cut switches of reactive power compensation devices and transformer tapping should be considered in the DRPO(Dyna-mic Reactive Power Optimization) model. However, DRPO is a large-scale, multi-period and strong coupling mixed integer nonlinear programming problem which is difficult to be solved directly. Therefore, the DRPO model is established with the minimum active power loss as its objective, and a practical three-stage DRPO algorithm is proposed, whose core is a forward-backward-pass dynamic programming approach with polynomial computational complexity. The solution of the proposed DRPO problem is divided into three stages, namely the continuous reactive power optimization calculation in multiple time sections, the stepwise approximation of the ideal reactive power compensation curves of reactive power compensation devices and ratio curves of transformers, and the continuous reactive power optimization calculation under the determined reactive power compensation capacity and transformer ratio in each period. The IEEE 30-bus system and an actual regional power grid are tested, and the results verify the effectiveness and applicability of the proposed algorithm.
Key words:  dynamic reactive power optimization  constraint of action time  three-stage algorithm  discretization  mixed integer nonlinear programming  models

用微信扫一扫

用微信扫一扫