引用本文:朱永利,刘刚,黄政,谢伟.基于二进制微分进化算法和目标函数分解的大规模机组组合求解[J].电力自动化设备,2019,39(10):
ZHU YongLi,LIU Gang,HUANG Zheng,XIE Wei.Large-scale unit commitment solution based on binary differential evolution algorithm and objective function decomposition[J].Electric Power Automation Equipment,2019,39(10):
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4268次   下载 1661  
基于二进制微分进化算法和目标函数分解的大规模机组组合求解
朱永利1, 刘刚1,2, 黄政2, 谢伟3
1.华北电力大学 电气与电子工程学院,河北 保定 071003;2.贵州理工学院 电气与信息工程学院,贵州 贵阳 550003;3.国网福建省电力有限公司南平供电公司,福建 南平 353000
摘要:
为了避免在机组组合求解过程中将机组启停计划和负荷经济调度两者形成内外双层嵌套求解,从而导致计算比较耗时的问题,引入启运机组的总平均燃料成本和系统旋转备用剩余量这2个可调节的子目标,将传统的机组组合模型分解成2个独立的优化目标,构建了一种基于目标函数分解的二阶段可独立求解的机组组合模型。采用一种改进的二进制微分进化算法对第一阶段的机组启停计划目标进行求解,对每个代表机组启停状态的个体编码采用机组最小启停时间约束、旋转备用约束、机组去组合等处理机制,有效保证了每个解的有效性并缩小了算法的搜索空间。根据求解得到的机组启停状态,采用半定规划法求解第二阶段的负荷经济调度目标。采用经典的测试算例验证了所提方法在大规模机组组合求解中的有效性。
关键词:  机组组合  经济调度  二进制微分进化算法  目标函数分解  平均燃料成本  半定规划法
DOI:10.16081/j.epae.201909010
分类号:TM761
基金项目:国家自然科学基金资助项目(51677072);贵州省联合基金资助项目(LH[2016]7103);贵州理工学院高层次人才科研启动经费资助项目(XJGC20150401);贵州理工学院学术新苗培养及探索创新项目([2017]5789-22)
Large-scale unit commitment solution based on binary differential evolution algorithm and objective function decomposition
ZHU YongLi1, LIU Gang1,2, HUANG Zheng2, XIE Wei3
1.School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China;2.School of Electrical and Information Engineering, Guizhou Institute of Technology, Guiyang 550003, China;3.Nanping Power Supply Company of State Grid Fujian Power Co.,Ltd.,Nanping 353000, China
Abstract:
In order to avoid the problem of time-consuming caused by the internal and external two-level nested solution of unit start-stop schedule and load economic dispatch in the solving process of UC(Unit Commitment),two adjustable sub-objectives, namely the total average fuel cost of start unit and the system’s spare spinning reserve capacity, are introduced to decompose the traditional UC model into two independent optimization objectives, then a two-stage UC model based on the objective function decomposition is proposed, in which the sub-stage model can be solved independently. An improved BDE(Binary Differential Evolution) algorithm is used to solve the unit start-stop schedule objective in the first stage. The handling mechanisms such as the minimum unit start-stop time constraint, the spinning reserve capacity constraint, the unit de-commitment, and so on, are applied to each individual coding that represents the start-stop status of unit, which can effectively guarantee the validity of each solution and reduce the search space of the algorithm. According to the solved start-stop status of unit, the semi-definite programming method is used to solve the load economic dispatch objective in the second stage. The effectiveness of the proposed method in solving the large-scale UC is verified by a classical test example.
Key words:  unit commitment  economic dispatch  binary differential evolution algorithm  objective function decomposition  average fuel cost  semi-definite programming method

用微信扫一扫

用微信扫一扫