引用本文:魏春,蒋繁,王宇蝶,白晓清.基于Sinkhorn分布鲁棒优化的综合能源系统最优能流方法[J].电力自动化设备,2024,44(5):28-35.
WEI Chun,JIANG Fan,WANG Yudie,BAI Xiaoqing.Optimal energy flow method of integrated energy system based on Sinkhorn distribution robust optimization[J].Electric Power Automation Equipment,2024,44(5):28-35.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 6958次   下载 1512 本文二维码信息
码上扫一扫!
基于Sinkhorn分布鲁棒优化的综合能源系统最优能流方法
魏春1, 蒋繁1, 王宇蝶1, 白晓清2
1.浙江工业大学 信息工程学院,浙江 杭州 310012;2.广西大学 广西电力系统最优化及节能技术重点实验室,广西 南宁 530004
摘要:
针对风电接入综合能源系统所带来的不确定性问题,提出一种基于Sinkhorn分布鲁棒优化的动态最优能流模型及求解方法。将风电的不确定性描述为包含概率分布信息的模糊不确定集,并将其构造为以风电出力经验分布为中心,以Sinkhorn距离为半径的Sinkhorn球。采用二分搜索的批量梯度下降法求解,以降低风电不确定性所带来的影响,并减少计算复杂度。算例结果表明,所提方法与随机优化和传统鲁棒优化方法相比,能更有效地平衡系统的鲁棒性与经济性。此外,所提方法在不同样本规模下的计算时间及目标函数均优于Wasserstein方法。
关键词:  综合能源系统  鲁棒优化  最优能流  风电不确定性  模糊不确定集
DOI:10.16081/j.epae.202312009
分类号:TM744;TK01
基金项目:国家自然科学基金资助项目(51967001);浙江省自然科学基金资助项目(LY21E070003)
Optimal energy flow method of integrated energy system based on Sinkhorn distribution robust optimization
WEI Chun1, JIANG Fan1, WANG Yudie1, BAI Xiaoqing2
1.Department of Information Engineering, Zhejiang University of Technology, Hangzhou 310012, China;2.Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning 530004, China
Abstract:
Aiming at the uncertainty problem brought by wind power access to the integrated energy system, a dynamic optimal energy flow model and solution method based on Sinkhorn distribution robust optimization are proposed. The uncertainty of wind power is described as a fuzzy uncertainty set containing probability distribution information, and it is constructed as a Sinkhorn sphere with the empirical distribution of wind power output as the center and the Sinkhorn distance as the radius. Then, a batch gradient descent method of binary search is used to solve the problem in order to reduce the impact of wind power uncertainty and the computational complexity. The results of case study show that the proposed method can effectively balance the robustness and economy of system compared with the stochastic optimization and traditional robust optimization. Moreover, the computational time and objective function of the proposed method are better than those of the Wasserstein method under different sample scales.
Key words:  integrated energy system  robust optimization  optimal energy flow  uncertainty of wind power  fuzzy uncertainty set

用微信扫一扫

用微信扫一扫