引用本文:刘乐,陈旭明,康小宁,马晓伟,李诗闯,赵勃扬,李昕盈,刘鑫.基于反行波波前瞬时能量谱的深远海风电经柔直并网系统的双端行波故障测距方法[J].电力自动化设备,2025,45(3):
LIU Le,CHEN Xuming,KANG Xiaoning,MA Xiaowei,LI Shichuang,ZHAO Boyang,LI Xinying,LIU Xin.Dual-end traveling wave fault location method for deep-sea offshore wind-integrating system via MMC-HVDC using instantaneous energy spectrum of wavefront of backward traveling wave[J].Electric Power Automation Equipment,2025,45(3):
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 3748次   下载 914  
基于反行波波前瞬时能量谱的深远海风电经柔直并网系统的双端行波故障测距方法
刘乐1, 陈旭明1, 康小宁1, 马晓伟1,2, 李诗闯1, 赵勃扬1, 李昕盈1, 刘鑫2
1.西安交通大学 电气工程学院,陕西 西安 710049;2.国家电网公司西北分部,陕西 西安 710048
摘要:
现有的行波测距方法的精确性和可靠性受到保护采样频率、强噪声干扰、短故障距离、高过渡电阻等因素的严重影响,对此提出一种基于小波自适应阈值降噪(AWTD)和结合变分模态分解(VMD)的Hilbert变换的双端行波故障测距方法。利用AWTD算法对故障反行波数据进行降噪预处理。通过VMD算法提取蕴含故障距离信息的高频本征模态函数。利用Hilbert变换获得第5层本征模态函数的瞬时能量谱,并通过瞬时能量谱的最大值实现对线路两端反行波波头的标定,得到行波抵达保护测量点的精确时间,从而结合线路两端行波波速度预测故障距离。在PSCAD/EMTDC与RTDS仿真平台中搭建双端与三端典型深远海风电并网模型进行大量测试,结果表明,所提测距方法不受故障电阻、故障类型的影响,在不同采样频率、近端故障、强噪声干扰与实时仿真环境下,均能实现精准的故障定位,具有一定工程应用价值。
关键词:  深远海风电  行波故障测距  小波自适应阈值降噪  变分模态分解  Hilbert变换  瞬时能量谱
DOI:10.16081/j.epae.202501020
分类号:TK81;TM77
基金项目:国家自然科学基金资助项目(52407142)
Dual-end traveling wave fault location method for deep-sea offshore wind-integrating system via MMC-HVDC using instantaneous energy spectrum of wavefront of backward traveling wave
LIU Le1, CHEN Xuming1, KANG Xiaoning1, MA Xiaowei1,2, LI Shichuang1, ZHAO Boyang1, LI Xinying1, LIU Xin2
1.School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China;2.Northwest Branch of State Grid Corporation of China, Xi’an 710048, China
Abstract:
The accuracy and reliability of existing traveling wave fault location methods are significantly affected by factors such as the protection sampling frequency, strong noise interference, short fault distance and high transition resistance. To address these issues, a dual-end traveling wave fault location method based on wavelet adaptive threshold denoising(AWTD) and variational mode decomposition(VMD) combined with Hilbert transform is proposed. The AWTD algorithm is utilized to preprocess the fault traveling wave data for noise reduction. Then, the VMD algorithm is applied to extract high-frequency intrinsic mode functions(IMFs) containing fault distance information. The fifth-level IMF is processed using the Hilbert transform to obtain its instantaneous energy spectrum. By utilizing the maximum value of the instantaneous energy spectrum, the traveling wave arrival times at both ends are achieved, thus obtaining precise timing for the arrival of traveling waves at relay points, so the fault distance can be predicted by combining the traveling wave velocities at both ends of the line. Extensive tests are carried out by dual-end and three-end typical deep-sea wind power integrated grid models established in the PSCAD/EMTDC and RTDS simulation platforms, the results demonstrate that the proposed fault location method is not affected by fault resistance or fault type, and can achieve accurate fault localization under different sampling frequencies, near-end faults, strong noise interference and real-time simulation environments. Therefore, the proposed method has certain engineering application value.
Key words:  deep-sea offshore winds  traveling wave based fault location  wavelet adaptive threshold denoising  variational mode decomposition  Hilbert transform  instantaneous energy spectrum

用微信扫一扫

用微信扫一扫