引用本文:郭红霞,李琳,陈凌轩,李渊,马骞,陈皓勇.基于双层主从博弈的网-商-车协同优化调度[J].电力自动化设备,2025,45(10):144-150,185.
GUO Hongxia,LI Lin,CHEN Lingxuan,LI Yuan,MA Qian,CHEN Haoyong.Grid-EVA-EVs collaborative optimal scheduling based on bi-level Stackelberg game[J].Electric Power Automation Equipment,2025,45(10):144-150,185.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1645次   下载 350 本文二维码信息
码上扫一扫!
基于双层主从博弈的网-商-车协同优化调度
郭红霞1, 李琳1, 陈凌轩1, 李渊1, 马骞2, 陈皓勇1
1.华南理工大学 电力学院,广东 广州 510640;2.中国南方电网电力调度控制中心,广东 广州 510663
摘要:
为了解决电动汽车(EV)参与多元需求响应时因信息不对称所导致的调度不准确问题,提出一种基于双层主从博弈的网-商-车协同优化调度模型。根据EV用户参与需求响应的类型和积极性,建立具有不同EV充电特性的多元需求响应模型。考虑到决策时间的先后顺序,构建以电网公司为领导者、电动汽车聚合商(EVA)为跟随者的上层博弈模型以及以EVA为领导者、EV用户为跟随者的下层博弈模型。将上层模型求解得到的电价传递给下层模型,下层模型依据电价对EV进行优化调度,调度结果会动态影响上层电网公司的收益以及EVA从电网公司获得的需求响应补贴收益,通过双层博弈的相互协调达到均衡点。算例仿真结果表明,所提模型不仅能够准确描述3个利益主体之间的相互博弈行为和互动时间顺序,还能在领导者总体效益最大化的基础上,有效地增加跟随者的总体效益。
关键词:  电动汽车  电网公司  电动汽车聚合商  双层主从博弈  多元需求响应  优化调度
DOI:10.16081/j.epae.202507005
分类号:
基金项目:国家重点研发计划项目(2022YFB2403500)
Grid-EVA-EVs collaborative optimal scheduling based on bi-level Stackelberg game
GUO Hongxia1, LI Lin1, CHEN Lingxuan1, LI Yuan1, MA Qian2, CHEN Haoyong1
1.School of Electric Power, South China University of Technology, Guangzhou 510640, China;2.Power Dispatching and Control Center of China Southern Power Grid, Guangzhou 510663, China
Abstract:
In order to solve the problem of inaccurate scheduling caused by information asymmetry when electric vehicles(EVs) participate in multivariate demand response programs, a grid-electric vehicle aggregator(EVA)-EVs collaborative optimal scheduling model based on bi-level Stackelberg game is proposed. Based on the types and responsiveness of EV users’ participation in demand response, a multivariate demand response model with different EV charging characteristics is established. Considering the sequence of decision-making time, an upper-level game model with the power grid company as the leader and the EVA as the follower, as well as a lower-level game model with EVA as the leader and EV users as the follower, are constructed. The electricity price obtained by solving the upper-level model is transferred to the lower-level model, based on which, the scheduling of EVs is optimized by the lower-level model. The scheduling results dynamically affect the revenue of the upper-level power grid company and the demand response subsidy revenue of EVA obtained from power grid company. The equilibrium point is achieved through the mutual coordination of bi-level game. The simulative results of case study show that the proposed model can not only accurately describe the mutual game behavior and interaction time sequence among the three interest subjects, but also effectively increase the overall benefit of the followers on the basis of maximizing the overall benefit of the leader.
Key words:  electric vehicle  power grid company  electric vehicle aggregator  bi-level Stackelberg game  multivariate demand response  optimal scheduling

用微信扫一扫

用微信扫一扫