引用本文:赵书涛,曾瑞,刘会兰,许文杰,李建鹏,刘教民.基于振动和电流信号多域特征联合的高压断路器储能状态辨识方法[J].电力自动化设备,2023,43(8):181-187
ZHAO Shutao,ZENG Rui,LIU Huilan,XU Wenjie,LI Jianpeng,LIU Jiaomin.Energy storage state identification method of high-voltage circuit breaker based on multi-domain feature combination of vibration and current signals[J].Electric Power Automation Equipment,2023,43(8):181-187
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 7838次   下载 1693 本文二维码信息
码上扫一扫!
基于振动和电流信号多域特征联合的高压断路器储能状态辨识方法
赵书涛1, 曾瑞1, 刘会兰1, 许文杰1, 李建鹏2, 刘教民1
1.华北电力大学 电气与电子工程学院,河北 保定 071003;2.国网河北省电力有限公司超高压分公司,河北 石家庄 050070
摘要:
为实现高压断路器的储能状态辨识,提出了一种基于伴随振动和电流信号多域特征提取的储能状态辨识方法。对振动信号进行倒频谱分析提取频域周期分量特征来体现电机周期性转动轨迹的基频和高频特性;采用相空间重构理论经关联积分法获取相空间域关联维数与Kolmogorov熵,定量评估储能过程随机运动的复杂程度;计算电机电流持续时间、起始电流值及偏度时域特征,与振动信号特征构建多域联合特征向量;通过支持向量机算法实现断路器储能状态辨识。实验结果表明,基于振动和电流信号多域联合特征的辨识算法准确率达到97%,有效地提高了断路器储能典型工况的识别准确率。
关键词:  断路器  储能状态  振动信号  多域特征  倒频谱分析  相空间重构
DOI:10.16081/j.epae.202208045
分类号:TM561
基金项目:中央高校基本科研业务费专项资金资助项目(2021MS064);开关类设备高可靠性运维关键技术研究及应用项目(SGTYHT/19-JS-215)
Energy storage state identification method of high-voltage circuit breaker based on multi-domain feature combination of vibration and current signals
ZHAO Shutao1, ZENG Rui1, LIU Huilan1, XU Wenjie1, LI Jianpeng2, LIU Jiaomin1
1.School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China;2.Super High Voltage Branch of State Grid Hebei Electric Power Co.,Ltd.,Shijiazhuang 050070, China
Abstract:
In order to realize the energy storage state identification of high-voltage circuit breakers, an energy storage state identification method based on multi-domain feature extraction of accompanying vibration and current signals is proposed. The cepstrum analysis is performed on the vibration signal to extract the periodic component features in the frequency domain, which reflects the fundamental frequency and high-frequency characteristics of the motor periodic rotation trajectory. Then, the phase space reconstruction theory is used to obtain the correlation dimension and Kolmogorov entropy of the phase space domain by the G-P method to quantitatively evaluate the complexity of the random motion of the energy storage process. The motor current duration, initial current value and skewness time domain feature are calculated, and the multi-domain feature vector is constructed with the vibration signal feature. The energy storage state identification of circuit breakers is realized by the support vector machine algorithm. The experimental results show that the accuracy of the proposed identification algorithm based on the multi-domain joint features of vibration and current signals reaches 97%,which effectively improves the identification accuracy of the typical working conditions of the circuit breaker energy storage.
Key words:  circuit breaker  energy storage state  vibration signal  multi-domain feature  cepstrum analysis  phase space reconstruction

用微信扫一扫

用微信扫一扫